nimbus-eth2/beacon_chain/sync/sync_queue.nim

1026 lines
36 KiB
Nim
Raw Permalink Normal View History

# beacon_chain
# Copyright (c) 2018-2023 Status Research & Development GmbH
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
{.push raises: [].}
import std/[heapqueue, tables, strutils, sequtils, math]
import stew/[results, base10], chronos, chronicles
import
../spec/datatypes/[base, phase0, altair],
../spec/[helpers, forks],
../networking/[peer_pool, eth2_network],
../gossip_processing/block_processor,
../consensus_object_pools/block_pools_types
export base, phase0, altair, merge, chronos, chronicles, results,
block_pools_types, helpers
logScope:
topics = "syncqueue"
type
GetSlotCallback* = proc(): Slot {.gcsafe, raises: [Defect].}
ProcessingCallback* = proc() {.gcsafe, raises: [Defect].}
BlockVerifier* = proc(signedBlock: ForkedSignedBeaconBlock,
blobs: Opt[BlobSidecars], maybeFinalized: bool):
Future[Result[void, VerifierError]] {.gcsafe, raises: [Defect].}
SyncQueueKind* {.pure.} = enum
Forward, Backward
SyncRequest*[T] = object
kind*: SyncQueueKind
index*: uint64
slot*: Slot
count*: uint64
item*: T
SyncResult*[T] = object
request*: SyncRequest[T]
data*: seq[ref ForkedSignedBeaconBlock]
blobs*: Opt[seq[BlobSidecars]]
2022-09-19 09:37:42 +00:00
GapItem*[T] = object
start*: Slot
finish*: Slot
item*: T
SyncWaiter* = ref object
future: Future[void]
reset: bool
RewindPoint = object
failSlot: Slot
epochCount: uint64
SyncQueue*[T] = ref object
kind*: SyncQueueKind
inpSlot*: Slot
outSlot*: Slot
startSlot*: Slot
finalSlot*: Slot
chunkSize*: uint64
queueSize*: int
counter*: uint64
pending*: Table[uint64, SyncRequest[T]]
2022-09-19 09:37:42 +00:00
gapList*: seq[GapItem[T]]
waiters: seq[SyncWaiter]
getSafeSlot*: GetSlotCallback
debtsQueue: HeapQueue[SyncRequest[T]]
debtsCount: uint64
readyQueue: HeapQueue[SyncResult[T]]
rewind: Option[RewindPoint]
blockVerifier: BlockVerifier
ident*: string
chronicles.formatIt SyncQueueKind: toLowerAscii($it)
template shortLog*[T](req: SyncRequest[T]): string =
Base10.toString(uint64(req.slot)) & ":" &
Base10.toString(req.count) & "@" &
Base10.toString(req.index)
chronicles.expandIt SyncRequest:
`it` = shortLog(it)
peer = shortLog(it.item)
direction = toLowerAscii($it.kind)
proc getShortMap*[T](req: SyncRequest[T],
data: openArray[ref ForkedSignedBeaconBlock]): string =
## Returns all slot numbers in ``data`` as placement map.
var res = newStringOfCap(req.count)
var slider = req.slot
var last = 0
for i in 0 ..< req.count:
if last < len(data):
for k in last ..< len(data):
if slider == data[k][].slot:
res.add('x')
last = k + 1
break
elif slider < data[k][].slot:
res.add('.')
break
else:
res.add('.')
slider = slider + 1
res
proc getShortMap*[T](req: SyncRequest[T],
data: openArray[ref BlobSidecar]): string =
## Returns all slot numbers in ``data`` as placement map.
var res = newStringOfCap(req.count * MAX_BLOBS_PER_BLOCK)
var cur : uint64 = 0
for slot in req.slot..<req.slot+req.count:
if cur >= lenu64(data):
res.add('|')
continue
if slot == data[cur].slot:
for k in cur..<cur+MAX_BLOBS_PER_BLOCK:
if k >= lenu64(data) or slot != data[k].slot:
res.add('|')
break
else:
inc(cur)
res.add('x')
else:
res.add('|')
res
proc contains*[T](req: SyncRequest[T], slot: Slot): bool {.inline.} =
slot >= req.slot and slot < req.slot + req.count
proc cmp*[T](a, b: SyncRequest[T]): int =
cmp(uint64(a.slot), uint64(b.slot))
proc checkResponse*[T](req: SyncRequest[T],
data: openArray[Slot]): bool =
if len(data) == 0:
# Impossible to verify empty response.
return true
if uint64(len(data)) > req.count:
# Number of blocks in response should be less or equal to number of
# requested blocks.
return false
var slot = req.slot
var rindex = 0'u64
var dindex = 0
while (rindex < req.count) and (dindex < len(data)):
if slot < data[dindex]:
discard
elif slot == data[dindex]:
inc(dindex)
else:
return false
slot += 1'u64
rindex += 1'u64
if dindex == len(data):
return true
else:
return false
proc init[T](t1: typedesc[SyncRequest], kind: SyncQueueKind, start: Slot,
finish: Slot, t2: typedesc[T]): SyncRequest[T] =
let count = finish - start + 1'u64
SyncRequest[T](kind: kind, slot: start, count: count)
proc init[T](t1: typedesc[SyncRequest], kind: SyncQueueKind, slot: Slot,
count: uint64, item: T): SyncRequest[T] =
SyncRequest[T](kind: kind, slot: slot, count: count, item: item)
proc init[T](t1: typedesc[SyncRequest], kind: SyncQueueKind, start: Slot,
finish: Slot, item: T): SyncRequest[T] =
let count = finish - start + 1'u64
SyncRequest[T](kind: kind, slot: start, count: count, item: item)
proc empty*[T](t: typedesc[SyncRequest], kind: SyncQueueKind,
t2: typedesc[T]): SyncRequest[T] {.inline.} =
SyncRequest[T](kind: kind, count: 0'u64)
proc setItem*[T](sr: var SyncRequest[T], item: T) =
sr.item = item
proc isEmpty*[T](sr: SyncRequest[T]): bool {.inline.} =
(sr.count == 0'u64)
proc init*[T](t1: typedesc[SyncQueue], t2: typedesc[T],
queueKind: SyncQueueKind,
start, final: Slot, chunkSize: uint64,
getSafeSlotCb: GetSlotCallback,
blockVerifier: BlockVerifier,
syncQueueSize: int = -1,
ident: string = "main"): SyncQueue[T] =
## Create new synchronization queue with parameters
##
## ``start`` and ``final`` are starting and final Slots.
##
## ``chunkSize`` maximum number of slots in one request.
##
## ``syncQueueSize`` maximum queue size for incoming data.
## If ``syncQueueSize > 0`` queue will help to keep backpressure under
## control. If ``syncQueueSize <= 0`` then queue size is unlimited (default).
# SyncQueue is the core of sync manager, this data structure distributes
# requests to peers and manages responses from peers.
#
# Because SyncQueue is async data structure it manages backpressure and
# order of incoming responses and it also resolves "joker's" problem.
#
# Joker's problem
#
# According to pre-v0.12.0 Ethereum consensus network specification
# > Clients MUST respond with at least one block, if they have it and it
# > exists in the range. Clients MAY limit the number of blocks in the
# > response.
# https://github.com/ethereum/consensus-specs/blob/v0.11.3/specs/phase0/p2p-interface.md#L590
#
# Such rule can lead to very uncertain responses, for example let slots from
# 10 to 12 will be not empty. Client which follows specification can answer
# with any response from this list (X - block, `-` empty space):
#
# 1. X X X
# 2. - - X
# 3. - X -
# 4. - X X
# 5. X - -
# 6. X - X
# 7. X X -
#
# If peer answers with `1` everything will be fine and `block_processor`
# will be able to process all 3 blocks.
# In case of `2`, `3`, `4`, `6` - `block_processor` will fail immediately
# with chunk and report "parent is missing" error.
# But in case of `5` and `7` blocks will be processed by `block_processor`
# without any problems, however it will start producing problems right from
# this uncertain last slot. SyncQueue will start producing requests for next
# blocks, but all the responses from this point will fail with "parent is
# missing" error. Lets call such peers "jokers", because they are joking
# with responses.
#
# To fix "joker" problem we going to perform rollback to the latest finalized
# epoch's first slot.
#
# Note that as of spec v0.12.0, well-behaving clients are forbidden from
# answering this way. However, it still makes sense to attempt to handle
# this case to increase compatibility (e.g., with weak subjectivity nodes
# that are still backfilling blocks)
doAssert(chunkSize > 0'u64, "Chunk size should not be zero")
SyncQueue[T](
kind: queueKind,
startSlot: start,
finalSlot: final,
chunkSize: chunkSize,
queueSize: syncQueueSize,
getSafeSlot: getSafeSlotCb,
waiters: newSeq[SyncWaiter](),
counter: 1'u64,
pending: initTable[uint64, SyncRequest[T]](),
debtsQueue: initHeapQueue[SyncRequest[T]](),
inpSlot: start,
outSlot: start,
blockVerifier: blockVerifier,
ident: ident
)
proc `<`*[T](a, b: SyncRequest[T]): bool =
doAssert(a.kind == b.kind)
case a.kind
of SyncQueueKind.Forward:
a.slot < b.slot
of SyncQueueKind.Backward:
a.slot > b.slot
proc `<`*[T](a, b: SyncResult[T]): bool =
doAssert(a.request.kind == b.request.kind)
case a.request.kind
of SyncQueueKind.Forward:
a.request.slot < b.request.slot
of SyncQueueKind.Backward:
a.request.slot > b.request.slot
proc `==`*[T](a, b: SyncRequest[T]): bool =
(a.kind == b.kind) and (a.slot == b.slot) and (a.count == b.count)
proc lastSlot*[T](req: SyncRequest[T]): Slot =
## Returns last slot for request ``req``.
req.slot + req.count - 1'u64
proc makePending*[T](sq: SyncQueue[T], req: var SyncRequest[T]) =
req.index = sq.counter
sq.counter = sq.counter + 1'u64
sq.pending[req.index] = req
proc updateLastSlot*[T](sq: SyncQueue[T], last: Slot) {.inline.} =
## Update last slot stored in queue ``sq`` with value ``last``.
sq.finalSlot = last
proc wakeupWaiters[T](sq: SyncQueue[T], reset = false) =
## Wakeup one or all blocked waiters.
for item in sq.waiters:
if reset:
item.reset = true
if not(item.future.finished()):
item.future.complete()
proc waitForChanges[T](sq: SyncQueue[T]): Future[bool] {.async.} =
## Create new waiter and wait for completion from `wakeupWaiters()`.
var waitfut = newFuture[void]("SyncQueue.waitForChanges")
let waititem = SyncWaiter(future: waitfut)
sq.waiters.add(waititem)
try:
await waitfut
return waititem.reset
finally:
sq.waiters.delete(sq.waiters.find(waititem))
proc wakeupAndWaitWaiters[T](sq: SyncQueue[T]) {.async.} =
## This procedure will perform wakeupWaiters(true) and blocks until last
## waiter will be awakened.
var waitChanges = sq.waitForChanges()
sq.wakeupWaiters(true)
discard await waitChanges
proc clearAndWakeup*[T](sq: SyncQueue[T]) =
sq.pending.clear()
sq.wakeupWaiters(true)
proc resetWait*[T](sq: SyncQueue[T], toSlot: Option[Slot]) {.async.} =
## Perform reset of all the blocked waiters in SyncQueue.
##
## We adding one more waiter to the waiters sequence and
## call wakeupWaiters(true). Because our waiter is last in sequence of
## waiters it will be resumed only after all waiters will be awakened and
## finished.
# We are clearing pending list, so that all requests that are still running
# around (still downloading, but not yet pushed to the SyncQueue) will be
# expired. Its important to perform this call first (before await), otherwise
# you can introduce race problem.
sq.pending.clear()
# We calculating minimal slot number to which we will be able to reset,
# without missing any blocks. There 3 sources:
# 1. Debts queue.
# 2. Processing queue (`inpSlot`, `outSlot`).
# 3. Requested slot `toSlot`.
#
# Queue's `outSlot` is the lowest slot we added to `block_pool`, but
# `toSlot` slot can be less then `outSlot`. `debtsQueue` holds only not
# added slot requests, so it can't be bigger then `outSlot` value.
let minSlot =
case sq.kind
of SyncQueueKind.Forward:
if toSlot.isSome():
min(toSlot.get(), sq.outSlot)
else:
sq.outSlot
of SyncQueueKind.Backward:
if toSlot.isSome():
toSlot.get()
else:
sq.outSlot
sq.debtsQueue.clear()
sq.debtsCount = 0
sq.readyQueue.clear()
sq.inpSlot = minSlot
sq.outSlot = minSlot
# We are going to wakeup all the waiters and wait for last one.
await sq.wakeupAndWaitWaiters()
proc isEmpty*[T](sr: SyncResult[T]): bool {.inline.} =
## Returns ``true`` if response chain of blocks is empty (has only empty
## slots).
len(sr.data) == 0
proc hasEndGap*[T](sr: SyncResult[T]): bool {.inline.} =
## Returns ``true`` if response chain of blocks has gap at the end.
let lastslot = sr.request.slot + sr.request.count - 1'u64
if len(sr.data) == 0:
return true
if sr.data[^1][].slot != lastslot:
return true
return false
proc getLastNonEmptySlot*[T](sr: SyncResult[T]): Slot {.inline.} =
## Returns last non-empty slot from result ``sr``. If response has only
## empty slots, original request slot will be returned.
if len(sr.data) == 0:
# If response has only empty slots we going to use original request slot
sr.request.slot
else:
sr.data[^1][].slot
2022-09-19 09:37:42 +00:00
proc processGap[T](sq: SyncQueue[T], sr: SyncResult[T]) =
if sr.isEmpty():
let gitem = GapItem[T](start: sr.request.slot,
finish: sr.request.slot + sr.request.count - 1'u64,
item: sr.request.item)
sq.gapList.add(gitem)
else:
if sr.hasEndGap():
let gitem = GapItem[T](start: sr.getLastNonEmptySlot() + 1'u64,
finish: sr.request.slot + sr.request.count - 1'u64,
item: sr.request.item)
sq.gapList.add(gitem)
else:
sq.gapList.reset()
proc rewardForGaps[T](sq: SyncQueue[T], score: int) =
mixin updateScore, getStats
logScope:
sync_ident = sq.ident
direction = sq.kind
topics = "syncman"
for gap in sq.gapList:
if score < 0:
# Every empty response increases penalty by 25%, but not more than 200%.
let
emptyCount = gap.item.getStats(SyncResponseKind.Empty)
goodCount = gap.item.getStats(SyncResponseKind.Good)
if emptyCount <= goodCount:
gap.item.updateScore(score)
else:
let
weight = int(min(emptyCount - goodCount, 8'u64))
newScore = score + score * weight div 4
gap.item.updateScore(newScore)
debug "Peer received gap penalty", peer = gap.item,
penalty = newScore
else:
gap.item.updateScore(score)
proc toDebtsQueue[T](sq: SyncQueue[T], sr: SyncRequest[T]) =
sq.debtsQueue.push(sr)
sq.debtsCount = sq.debtsCount + sr.count
proc getRewindPoint*[T](sq: SyncQueue[T], failSlot: Slot,
safeSlot: Slot): Slot =
logScope:
sync_ident = sq.ident
direction = sq.kind
topics = "syncman"
case sq.kind
of SyncQueueKind.Forward:
# Calculate the latest finalized epoch.
let finalizedEpoch = epoch(safeSlot)
# Calculate failure epoch.
let failEpoch = epoch(failSlot)
# Calculate exponential rewind point in number of epochs.
let epochCount =
if sq.rewind.isSome():
let rewind = sq.rewind.get()
if failSlot == rewind.failSlot:
# `MissingParent` happened at same slot so we increase rewind point by
# factor of 2.
if failEpoch > finalizedEpoch:
let rewindPoint = rewind.epochCount shl 1
if rewindPoint < rewind.epochCount:
# If exponential rewind point produces `uint64` overflow we will
# make rewind to latest finalized epoch.
failEpoch - finalizedEpoch
else:
if (failEpoch < rewindPoint) or
(failEpoch - rewindPoint < finalizedEpoch):
# If exponential rewind point points to position which is far
# behind latest finalized epoch.
failEpoch - finalizedEpoch
else:
rewindPoint
else:
warn "Trying to rewind over the last finalized epoch",
finalized_slot = safeSlot, fail_slot = failSlot,
finalized_epoch = finalizedEpoch, fail_epoch = failEpoch,
rewind_epoch_count = rewind.epochCount,
finalized_epoch = finalizedEpoch
0'u64
else:
# `MissingParent` happened at different slot so we going to rewind for
# 1 epoch only.
if (failEpoch < 1'u64) or (failEpoch - 1'u64 < finalizedEpoch):
warn "Сould not rewind further than the last finalized epoch",
finalized_slot = safeSlot, fail_slot = failSlot,
finalized_epoch = finalizedEpoch, fail_epoch = failEpoch,
rewind_epoch_count = rewind.epochCount,
finalized_epoch = finalizedEpoch
0'u64
else:
1'u64
else:
# `MissingParent` happened first time.
if (failEpoch < 1'u64) or (failEpoch - 1'u64 < finalizedEpoch):
warn "Сould not rewind further than the last finalized epoch",
finalized_slot = safeSlot, fail_slot = failSlot,
finalized_epoch = finalizedEpoch, fail_epoch = failEpoch,
finalized_epoch = finalizedEpoch
0'u64
else:
1'u64
if epochCount == 0'u64:
warn "Unable to continue syncing, please restart the node",
finalized_slot = safeSlot, fail_slot = failSlot,
finalized_epoch = finalizedEpoch, fail_epoch = failEpoch,
finalized_epoch = finalizedEpoch
# Calculate the rewind epoch, which will be equal to last rewind point or
# finalizedEpoch
let rewindEpoch =
if sq.rewind.isNone():
finalizedEpoch
else:
epoch(sq.rewind.get().failSlot) - sq.rewind.get().epochCount
rewindEpoch.start_slot()
else:
# Calculate the rewind epoch, which should not be less than the latest
# finalized epoch.
let rewindEpoch = failEpoch - epochCount
# Update and save new rewind point in SyncQueue.
sq.rewind = some(RewindPoint(failSlot: failSlot, epochCount: epochCount))
rewindEpoch.start_slot()
of SyncQueueKind.Backward:
# While we perform backward sync, the only possible slot we could rewind is
# latest stored block.
if failSlot == safeSlot:
warn "Unable to continue syncing, please restart the node",
safe_slot = safeSlot, fail_slot = failSlot
safeSlot
# This belongs inside the blocks iterator below, but can't be there due to
# https://github.com/nim-lang/Nim/issues/21242
func getOpt(blobs: Opt[seq[BlobSidecars]], i: int): Opt[BlobSidecars] =
if blobs.isSome:
Opt.some(blobs.get()[i])
else:
Opt.none(BlobSidecars)
iterator blocks[T](sq: SyncQueue[T],
sr: SyncResult[T]): (ref ForkedSignedBeaconBlock, Opt[BlobSidecars]) =
case sq.kind
of SyncQueueKind.Forward:
for i in countup(0, len(sr.data) - 1):
yield (sr.data[i], sr.blobs.getOpt(i))
of SyncQueueKind.Backward:
for i in countdown(len(sr.data) - 1, 0):
yield (sr.data[i], sr.blobs.getOpt(i))
proc advanceOutput*[T](sq: SyncQueue[T], number: uint64) =
case sq.kind
of SyncQueueKind.Forward:
sq.outSlot = sq.outSlot + number
of SyncQueueKind.Backward:
sq.outSlot = sq.outSlot - number
proc advanceInput[T](sq: SyncQueue[T], number: uint64) =
case sq.kind
of SyncQueueKind.Forward:
sq.inpSlot = sq.inpSlot + number
of SyncQueueKind.Backward:
sq.inpSlot = sq.inpSlot - number
proc notInRange[T](sq: SyncQueue[T], sr: SyncRequest[T]): bool =
case sq.kind
of SyncQueueKind.Forward:
(sq.queueSize > 0) and (sr.slot > sq.outSlot)
of SyncQueueKind.Backward:
(sq.queueSize > 0) and (sr.lastSlot < sq.outSlot)
func numAlreadyKnownSlots[T](sq: SyncQueue[T], sr: SyncRequest[T]): uint64 =
## Compute the number of slots covered by a given `SyncRequest` that are
## already known and, hence, no longer relevant for sync progression.
let
outSlot = sq.outSlot
lowSlot = sr.slot
highSlot = sr.lastSlot
case sq.kind
of SyncQueueKind.Forward:
if outSlot > highSlot:
# Entire request is no longer relevant.
sr.count
elif outSlot > lowSlot:
# Request is only partially relevant.
outSlot - lowSlot
else:
# Entire request is still relevant.
0
of SyncQueueKind.Backward:
if lowSlot > outSlot:
# Entire request is no longer relevant.
sr.count
elif highSlot > outSlot:
# Request is only partially relevant.
highSlot - outSlot
else:
# Entire request is still relevant.
0
proc push*[T](sq: SyncQueue[T], sr: SyncRequest[T],
data: seq[ref ForkedSignedBeaconBlock],
blobs: Opt[seq[BlobSidecars]],
maybeFinalized: bool = false,
processingCb: ProcessingCallback = nil) {.async.} =
logScope:
sync_ident = sq.ident
topics = "syncman"
## Push successful result to queue ``sq``.
2022-09-19 09:37:42 +00:00
mixin updateScore, updateStats, getStats
if sr.index notin sq.pending:
# If request `sr` not in our pending list, it only means that
# SyncQueue.resetWait() happens and all pending requests are expired, so
# we swallow `old` requests, and in such way sync-workers are able to get
# proper new requests from SyncQueue.
return
sq.pending.del(sr.index)
# This is backpressure handling algorithm, this algorithm is blocking
# all pending `push` requests if `request.slot` not in range.
while true:
if sq.notInRange(sr):
let reset = await sq.waitForChanges()
if reset:
# SyncQueue reset happens. We are exiting to wake up sync-worker.
return
else:
let syncres = SyncResult[T](request: sr, data: data, blobs: blobs)
sq.readyQueue.push(syncres)
break
while len(sq.readyQueue) > 0:
let reqres =
case sq.kind
of SyncQueueKind.Forward:
let minSlot = sq.readyQueue[0].request.slot
if sq.outSlot < minSlot:
none[SyncResult[T]]()
else:
some(sq.readyQueue.pop())
of SyncQueueKind.Backward:
let maxslot = sq.readyQueue[0].request.slot +
(sq.readyQueue[0].request.count - 1'u64)
if sq.outSlot > maxslot:
none[SyncResult[T]]()
else:
some(sq.readyQueue.pop())
let item =
if reqres.isSome():
reqres.get()
else:
let rewindSlot = sq.getRewindPoint(sq.outSlot, sq.getSafeSlot())
warn "Got incorrect sync result in queue, rewind happens",
blocks_map = getShortMap(sq.readyQueue[0].request,
sq.readyQueue[0].data),
blocks_count = len(sq.readyQueue[0].data),
output_slot = sq.outSlot, input_slot = sq.inpSlot,
rewind_to_slot = rewindSlot, request = sq.readyQueue[0].request
await sq.resetWait(some(rewindSlot))
break
if processingCb != nil:
processingCb()
# Validating received blocks one by one
var
hasInvalidBlock = false
unviableBlock: Option[(Eth2Digest, Slot)]
missingParentSlot: Option[Slot]
2022-09-19 09:37:42 +00:00
goodBlock: Option[Slot]
# TODO when https://github.com/nim-lang/Nim/issues/21306 is fixed in used
# Nim versions, remove workaround and move `res` into for loop
res: Result[void, VerifierError]
var i=0
for blk, blb in sq.blocks(item):
res = await sq.blockVerifier(blk[], blb, maybeFinalized)
inc(i)
if res.isOk():
2022-09-19 09:37:42 +00:00
goodBlock = some(blk[].slot)
else:
case res.error()
of VerifierError.MissingParent:
missingParentSlot = some(blk[].slot)
break
of VerifierError.Duplicate:
# Keep going, happens naturally
discard
of VerifierError.UnviableFork:
# Keep going so as to register other unviable blocks with the
# quarantine
if unviableBlock.isNone:
# Remember the first unviable block, so we can log it
unviableBlock = some((blk[].root, blk[].slot))
of VerifierError.Invalid:
hasInvalidBlock = true
let req = item.request
notice "Received invalid sequence of blocks", request = req,
blocks_count = len(item.data),
blocks_map = getShortMap(req, item.data)
req.item.updateScore(PeerScoreBadValues)
break
# When errors happen while processing blocks, we retry the same request
# with, hopefully, a different peer
let retryRequest =
hasInvalidBlock or unviableBlock.isSome() or missingParentSlot.isSome()
2022-09-19 09:37:42 +00:00
if not(retryRequest):
let numSlotsAdvanced = item.request.count - sq.numAlreadyKnownSlots(sr)
sq.advanceOutput(numSlotsAdvanced)
2022-09-19 09:37:42 +00:00
if goodBlock.isSome():
# If there no error and response was not empty we should reward peer
# with some bonus score - not for duplicate blocks though.
item.request.item.updateScore(PeerScoreGoodValues)
2022-09-19 09:37:42 +00:00
item.request.item.updateStats(SyncResponseKind.Good, 1'u64)
# BlockProcessor reports good block, so we can reward all the peers
# who sent us empty responses.
sq.rewardForGaps(PeerScoreGoodValues)
2022-09-19 09:37:42 +00:00
sq.gapList.reset()
else:
# Response was empty
item.request.item.updateStats(SyncResponseKind.Empty, 1'u64)
sq.processGap(item)
if numSlotsAdvanced > 0:
sq.wakeupWaiters()
else:
debug "Block pool rejected peer's response", request = item.request,
blocks_map = getShortMap(item.request, item.data),
blocks_count = len(item.data),
2022-09-19 09:37:42 +00:00
ok = goodBlock.isSome(),
unviable = unviableBlock.isSome(),
missing_parent = missingParentSlot.isSome()
# We need to move failed response to the debts queue.
sq.toDebtsQueue(item.request)
2022-09-19 09:37:42 +00:00
if unviableBlock.isSome():
let req = item.request
notice "Received blocks from an unviable fork", request = req,
blockRoot = unviableBlock.get()[0],
blockSlot = unviableBlock.get()[1],
blocks_count = len(item.data),
blocks_map = getShortMap(req, item.data)
req.item.updateScore(PeerScoreUnviableFork)
2022-09-19 09:37:42 +00:00
if missingParentSlot.isSome():
var
resetSlot: Option[Slot]
failSlot = missingParentSlot.get()
# If we got `VerifierError.MissingParent` it means that peer returns
# chain of blocks with holes or `block_pool` is in incomplete state. We
# going to rewind the SyncQueue some distance back (2ⁿ, where n∈[0,∞],
# but no more than `finalized_epoch`).
let
req = item.request
safeSlot = sq.getSafeSlot()
2022-09-19 09:37:42 +00:00
gapsCount = len(sq.gapList)
# We should penalize all the peers which responded with gaps.
sq.rewardForGaps(PeerScoreMissingValues)
2022-09-19 09:37:42 +00:00
sq.gapList.reset()
case sq.kind
of SyncQueueKind.Forward:
2022-09-19 09:37:42 +00:00
if goodBlock.isSome():
# `VerifierError.MissingParent` and `Success` present in response,
2022-09-19 09:37:42 +00:00
# it means that we just need to request this range one more time.
debug "Unexpected missing parent, but no rewind needed",
request = req, finalized_slot = safeSlot,
last_good_slot = goodBlock.get(),
missing_parent_slot = missingParentSlot.get(),
blocks_count = len(item.data),
blocks_map = getShortMap(req, item.data),
gaps_count = gapsCount
req.item.updateScore(PeerScoreMissingValues)
else:
2022-09-19 09:37:42 +00:00
if safeSlot < req.slot:
let rewindSlot = sq.getRewindPoint(failSlot, safeSlot)
debug "Unexpected missing parent, rewind happens",
request = req, rewind_to_slot = rewindSlot,
rewind_point = sq.rewind, finalized_slot = safeSlot,
blocks_count = len(item.data),
blocks_map = getShortMap(req, item.data),
gaps_count = gapsCount
resetSlot = some(rewindSlot)
else:
error "Unexpected missing parent at finalized epoch slot",
request = req, rewind_to_slot = safeSlot,
blocks_count = len(item.data),
2022-09-19 09:37:42 +00:00
blocks_map = getShortMap(req, item.data),
gaps_count = gapsCount
req.item.updateScore(PeerScoreBadValues)
of SyncQueueKind.Backward:
if safeSlot > failSlot:
let rewindSlot = sq.getRewindPoint(failSlot, safeSlot)
# It's quite common peers give us fewer blocks than we ask for
debug "Gap in block range response, rewinding", request = req,
rewind_to_slot = rewindSlot, rewind_fail_slot = failSlot,
finalized_slot = safeSlot, blocks_count = len(item.data),
blocks_map = getShortMap(req, item.data)
resetSlot = some(rewindSlot)
req.item.updateScore(PeerScoreMissingValues)
else:
error "Unexpected missing parent at safe slot", request = req,
to_slot = safeSlot, blocks_count = len(item.data),
blocks_map = getShortMap(req, item.data)
req.item.updateScore(PeerScoreBadValues)
if resetSlot.isSome():
await sq.resetWait(resetSlot)
case sq.kind
of SyncQueueKind.Forward:
debug "Rewind to slot has happened", reset_slot = resetSlot.get(),
queue_input_slot = sq.inpSlot, queue_output_slot = sq.outSlot,
rewind_point = sq.rewind, direction = sq.kind
of SyncQueueKind.Backward:
debug "Rewind to slot has happened", reset_slot = resetSlot.get(),
queue_input_slot = sq.inpSlot, queue_output_slot = sq.outSlot,
direction = sq.kind
break
proc push*[T](sq: SyncQueue[T], sr: SyncRequest[T]) =
## Push failed request back to queue.
if sr.index notin sq.pending:
# If request `sr` not in our pending list, it only means that
# SyncQueue.resetWait() happens and all pending requests are expired, so
# we swallow `old` requests, and in such way sync-workers are able to get
# proper new requests from SyncQueue.
return
sq.pending.del(sr.index)
sq.toDebtsQueue(sr)
proc handlePotentialSafeSlotAdvancement[T](sq: SyncQueue[T]) =
# It may happen that sync progress advanced to a newer `safeSlot`, either
# by a response that started with good values and only had errors late, or
# through an out-of-band mechanism, e.g., VC / REST.
# If that happens, advance to the new `safeSlot` to avoid repeating requests
# for data that is considered immutable and no longer relevant.
let safeSlot = sq.getSafeSlot()
func numSlotsBehindSafeSlot(slot: Slot): uint64 =
case sq.kind
of SyncQueueKind.Forward:
if safeSlot > slot:
safeSlot - slot
else:
0
of SyncQueueKind.Backward:
if slot > safeSlot:
slot - safeSlot
else:
0
let
numOutSlotsAdvanced = sq.outSlot.numSlotsBehindSafeSlot
numInpSlotsAdvanced =
case sq.kind
of SyncQueueKind.Forward:
sq.inpSlot.numSlotsBehindSafeSlot
of SyncQueueKind.Backward:
if sq.inpSlot == 0xFFFF_FFFF_FFFF_FFFF'u64:
0'u64
else:
sq.inpSlot.numSlotsBehindSafeSlot
if numOutSlotsAdvanced != 0 or numInpSlotsAdvanced != 0:
debug "Sync progress advanced out-of-band",
safeSlot, outSlot = sq.outSlot, inpSlot = sq.inpSlot
if numOutSlotsAdvanced != 0:
sq.advanceOutput(numOutSlotsAdvanced)
if numInpSlotsAdvanced != 0:
sq.advanceInput(numInpSlotsAdvanced)
sq.wakeupWaiters()
func updateRequestForNewSafeSlot[T](sq: SyncQueue[T], sr: var SyncRequest[T]) =
# Requests may have originated before the latest `safeSlot` advancement.
# Update it to not request any data prior to `safeSlot`.
let
outSlot = sq.outSlot
lowSlot = sr.slot
highSlot = sr.lastSlot
case sq.kind
of SyncQueueKind.Forward:
if outSlot <= lowSlot:
# Entire request is still relevant.
discard
elif outSlot <= highSlot:
# Request is only partially relevant.
let
numSlotsDone = outSlot - lowSlot
sr.slot += numSlotsDone
sr.count -= numSlotsDone
else:
# Entire request is no longer relevant.
sr.count = 0
of SyncQueueKind.Backward:
if outSlot >= highSlot:
# Entire request is still relevant.
discard
elif outSlot >= lowSlot:
# Request is only partially relevant.
let
numSlotsDone = highSlot - outSlot
sr.count -= numSlotsDone
else:
# Entire request is no longer relevant.
sr.count = 0
proc pop*[T](sq: SyncQueue[T], maxslot: Slot, item: T): SyncRequest[T] =
## Create new request according to current SyncQueue parameters.
sq.handlePotentialSafeSlotAdvancement()
while len(sq.debtsQueue) > 0:
if maxslot < sq.debtsQueue[0].slot:
# Peer's latest slot is less than starting request's slot.
return SyncRequest.empty(sq.kind, T)
if maxslot < sq.debtsQueue[0].lastSlot():
# Peer's latest slot is less than finishing request's slot.
return SyncRequest.empty(sq.kind, T)
var sr = sq.debtsQueue.pop()
sq.debtsCount = sq.debtsCount - sr.count
sq.updateRequestForNewSafeSlot(sr)
if sr.isEmpty:
continue
sr.setItem(item)
sq.makePending(sr)
return sr
case sq.kind
of SyncQueueKind.Forward:
if maxslot < sq.inpSlot:
# Peer's latest slot is less than queue's input slot.
return SyncRequest.empty(sq.kind, T)
if sq.inpSlot > sq.finalSlot:
# Queue's input slot is bigger than queue's final slot.
return SyncRequest.empty(sq.kind, T)
let lastSlot = min(maxslot, sq.finalSlot)
let count = min(sq.chunkSize, lastSlot + 1'u64 - sq.inpSlot)
var sr = SyncRequest.init(sq.kind, sq.inpSlot, count, item)
sq.advanceInput(count)
sq.makePending(sr)
sr
of SyncQueueKind.Backward:
if sq.inpSlot == 0xFFFF_FFFF_FFFF_FFFF'u64:
return SyncRequest.empty(sq.kind, T)
if sq.inpSlot < sq.finalSlot:
return SyncRequest.empty(sq.kind, T)
let (slot, count) =
block:
let baseSlot = sq.inpSlot + 1'u64
if baseSlot - sq.finalSlot < sq.chunkSize:
let count = uint64(baseSlot - sq.finalSlot)
(baseSlot - count, count)
else:
(baseSlot - sq.chunkSize, sq.chunkSize)
if (maxslot + 1'u64) < slot + count:
# Peer's latest slot is less than queue's input slot.
return SyncRequest.empty(sq.kind, T)
var sr = SyncRequest.init(sq.kind, slot, count, item)
sq.advanceInput(count)
sq.makePending(sr)
sr
proc debtLen*[T](sq: SyncQueue[T]): uint64 =
sq.debtsCount
proc pendingLen*[T](sq: SyncQueue[T]): uint64 =
case sq.kind
of SyncQueueKind.Forward:
# When moving forward `outSlot` will be <= of `inpSlot`.
sq.inpSlot - sq.outSlot
of SyncQueueKind.Backward:
# When moving backward `outSlot` will be >= of `inpSlot`
sq.outSlot - sq.inpSlot
proc len*[T](sq: SyncQueue[T]): uint64 {.inline.} =
## Returns number of slots left in queue ``sq``.
case sq.kind
of SyncQueueKind.Forward:
if sq.finalSlot >= sq.outSlot:
sq.finalSlot + 1'u64 - sq.outSlot
else:
0'u64
of SyncQueueKind.Backward:
if sq.outSlot >= sq.finalSlot:
sq.outSlot + 1'u64 - sq.finalSlot
else:
0'u64
proc total*[T](sq: SyncQueue[T]): uint64 {.inline.} =
## Returns total number of slots in queue ``sq``.
case sq.kind
of SyncQueueKind.Forward:
if sq.finalSlot >= sq.startSlot:
sq.finalSlot + 1'u64 - sq.startSlot
else:
0'u64
of SyncQueueKind.Backward:
if sq.startSlot >= sq.finalSlot:
sq.startSlot + 1'u64 - sq.finalSlot
else:
0'u64
proc progress*[T](sq: SyncQueue[T]): uint64 =
## How many useful slots we've synced so far, adjusting for how much has
## become obsolete by time movements
sq.total - sq.len