nim-ethash/benchmarks/proof_of_work_keccak_tiny.nim

231 lines
8.6 KiB
Nim
Raw Normal View History

# Copyright (c) 2018-2024 Status Research & Development GmbH
# Distributed under the Apache v2 License (license terms are at http://www.apache.org/licenses/LICENSE-2.0).
import math, endians,
keccak_tiny
import ../src/private/[primes, conversion, functional, intmath]
import ../src/data_sizes
# ###############################################################################
# Definitions
const
REVISION* = 23 # Based on spec revision 23
WORD_BYTES = 4 # bytes in word - in Nim we use 64 bits words # TODO check that
DATASET_BYTES_INIT* = 2'u^30 # bytes in dataset at genesis
DATASET_BYTES_GROWTH* = 2'u^23 # dataset growth per epoch
CACHE_BYTES_INIT* = 2'u^24 # bytes in cache at genesis
CACHE_BYTES_GROWTH* = 2'u^17 # cache growth per epoch
CACHE_MULTIPLIER = 1024 # Size of the DAG relative to the cache
EPOCH_LENGTH* = 30000 # blocks per epoch
MIX_BYTES* = 128 # width of mix
HASH_BYTES* = 64 # hash length in bytes
DATASET_PARENTS* = 256 # number of parents of each dataset element
CACHE_ROUNDS* = 3 # number of rounds in cache production
ACCESSES* = 64 # number of accesses in hashimoto loop
# ###############################################################################
# Parameters
func get_cache_size*(block_number: uint): uint =
result = CACHE_BYTES_INIT + CACHE_BYTES_GROWTH * (block_number div EPOCH_LENGTH)
result -= HASH_BYTES
while (let dm = divmod(result, HASH_BYTES);
dm.rem == 0 and not dm.quot.isPrime):
# In a static lang, checking that the result of a division is prime
# Means checking that reminder == 0 and quotient is prime
result -= 2 * HASH_BYTES
func get_data_size*(block_number: uint): uint =
result = DATASET_BYTES_INIT + DATASET_BYTES_GROWTH * (block_number div EPOCH_LENGTH)
result -= MIX_BYTES
while (let dm = divmod(result, MIX_BYTES);
dm.rem == 0 and not dm.quot.isPrime):
result -= 2 * MIX_BYTES
# ###############################################################################
# Fetch from lookup tables of 2048 epochs of data sizes and cache sizes
func get_datasize_lut*(block_number: Natural): uint64 {.inline.} =
data_sizes[block_number div EPOCH_LENGTH]
func get_cachesize_lut*(block_number: Natural): uint64 {.inline.} =
cache_sizes[block_number div EPOCH_LENGTH]
# ###############################################################################
# Cache generation
func mkcache*(cache_size: uint64, seed: Hash[256]): seq[Hash[512]] =
# Cache size
let n = int(cache_size div HASH_BYTES)
# Sequentially produce the initial dataset
result = newSeq[Hash[512]](n)
result[0] = keccak512 seed.data
for i in 1 ..< n:
result[i] = keccak512 result[i-1].data
# Use a low-round version of randmemohash
for _ in 0 ..< CACHE_ROUNDS:
for i in 0 ..< n:
let
v = result[i].as_u32_words[0] mod n.uint32
a = result[(i-1+n) mod n].data
b = result[v.int].data
result[i] = keccak512 zipMap(a, b, x xor y)
# ###############################################################################
# Data aggregation function
const FNV_PRIME = 0x01000193
func fnv*[T: SomeUnsignedInt or Natural](v1, v2: T): uint32 {.inline.}=
# Original formula is ((v1 * FNV_PRIME) xor v2) mod 2^32
# However contrary to Python and depending on the type T,
# in Nim (v1 * FNV_PRIME) can overflow
# We can't do 2^32 with an int (only 2^32-1)
# and in general (a xor b) mod c != (a mod c) xor (b mod c)
#
# Thankfully
# We know that:
# - (a xor b) and c == (a and c) xor (b and c)
# - for powers of 2: a mod 2^p == a and (2^p - 1)
# - 2^32 - 1 == high(uint32)
# So casting to uint32 should do the modulo and masking just fine
(v1.uint32 * FNV_PRIME) xor v2.uint32
# ###############################################################################
# Full dataset calculation
func calc_dataset_item*(cache: seq[Hash[512]], i: Natural): Hash[512] {.noinit.} =
let n = cache.len
const r: uint32 = HASH_BYTES div WORD_BYTES
# Alias for the result value. Interpreted as an array of uint32 words
var mix = cast[ptr array[16, uint32]](addr result)
mix[] = cache[i mod n].as_u32_words
when system.cpuEndian == littleEndian:
mix[0] = mix[0] xor i.uint32
else:
mix[high(mix)] = mix[high(mix)] xor i.uint32
result = keccak512 mix[]
# FNV with a lots of random cache nodes based on i
for j in 0'u32 ..< DATASET_PARENTS:
let cache_index = fnv(i.uint32 xor j, mix[j mod r])
mix[] = zipMap(mix[], cache[cache_index.int mod n].as_u32_words, fnv(x, y))
result = keccak512 mix[]
when defined(openmp):
# Remove stacktraces when using OpenMP, heap alloc from strings will crash.
{.push stacktrace: off.}
proc calc_dataset*(full_size: Natural, cache: seq[Hash[512]]): seq[Hash[512]] =
result = newSeq[Hash[512]](full_size div HASH_BYTES)
for i in `||`(0, result.len - 1, "simd"):
# OpenMP loop
result[i] = calc_dataset_item(cache, i)
when defined(openmp):
# Remove stacktraces when using OpenMP, heap alloc from strings will crash.
{.pop.}
# ###############################################################################
# Main loop
type HashimotoHash = tuple[mix_digest, value: Hash[256]]
template hashimoto(header: Hash[256],
nonce: uint64,
full_size: Natural,
dataset_lookup_p: untyped,
dataset_lookup_p1: untyped,
result: var HashimotoHash
) =
let
n = uint32 full_size div HASH_BYTES
w = uint32 MIX_BYTES div WORD_BYTES
mixhashes = uint32 MIX_BYTES div HASH_BYTES
assert full_size mod HASH_BYTES == 0
assert MIX_BYTES mod HASH_BYTES == 0
# combine header+nonce into a 64 byte seed
var s{.noinit.}: Hash[512]
let s_bytes = cast[ptr array[64, byte]](addr s) # Alias for to interpret s as a byte array
let s_words = cast[ptr array[16, uint32]](addr s) # Alias for to interpret s as an uint32 array
s_bytes[][0..<32] = header.data # We first populate the first 40 bytes of s with the concatenation
# In template we need to dereference first otherwise it's not considered as var
var nonceLE{.noinit.}: array[8, byte] # the nonce should be concatenated with its LITTLE ENDIAN representation
littleEndian64(addr nonceLE, unsafeAddr nonce)
s_bytes[][32..<40] = cast[array[8,byte]](nonceLE)
s = keccak_512 s_bytes[][0..<40] # TODO: Does this allocate a seq?
# start the mix with replicated s
assert MIX_BYTES div HASH_BYTES == 2
var mix{.noinit.}: array[32, uint32]
mix[0..<16] = s_words[]
mix[16..<32] = s_words[]
# mix in random dataset nodes
for i in 0'u32 ..< ACCESSES:
let p{.inject.} = fnv(i xor s_words[0], mix[i mod w]) mod (n div mixhashes) * mixhashes
let p1{.inject.} = p + 1
# Unrolled: for j in range(MIX_BYTES / HASH_BYTES): => for j in 0 ..< 2
var newdata{.noinit.}: type mix
newdata[0..<16] = cast[array[16, uint32]](dataset_lookup_p)
newdata[16..<32] = cast[array[16, uint32]](dataset_lookup_p1)
mix = zipMap(mix, newdata, fnv(x, y))
# compress mix
# ⚠⚠ Warning ⚠⚠: Another bigEndian littleEndian issue?
# It doesn't seem like the uint32 in cmix need to be changed to big endian
# cmix is an alias to the result.mix_digest
let cmix = cast[ptr array[8, uint32]](addr result.mix_digest)
for i in countup(0, mix.len - 1, 4):
cmix[i div 4] = mix[i].fnv(mix[i+1]).fnv(mix[i+2]).fnv(mix[i+3])
var concat{.noinit.}: array[64 + 32, byte]
concat[0..<64] = s_bytes[]
concat[64..<96] = cast[array[32, byte]](result.mix_digest)
result.value = keccak_256(concat)
func hashimoto_light*(full_size:Natural, cache: seq[Hash[512]],
header: Hash[256], nonce: uint64): HashimotoHash =
hashimoto(header,
nonce,
full_size,
calc_data_set_item(cache, p),
calc_data_set_item(cache, p1),
result)
func hashimoto_full*(full_size:Natural, dataset: seq[Hash[512]],
header: Hash[256], nonce: uint64): HashimotoHash =
# TODO spec mentions full_size but I don't think we need it (retrieve it from dataset.len)
hashimoto(header,
nonce,
full_size,
dataset[int(p)],
dataset[int(p1)],
result)
# ###############################################################################
# Defining the seed hash
func get_seedhash*(block_number: uint64): Hash[256] =
for i in 0 ..< int(block_number div EPOCH_LENGTH):
result = keccak256 result.data