Switch to nimcrypto (#6) fix #9

* Cosmetic change on the conversion proc + keep a copy of keccak_tiny implementation as benchmark

* Update ethash to use nimcrypto

* Use the same CI build system as Nimbus
This commit is contained in:
Mamy Ratsimbazafy 2018-07-23 14:52:14 +02:00 committed by GitHub
parent 8486a31f4f
commit ea46bad40e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 359 additions and 125 deletions

View File

@ -1,37 +1,48 @@
version: '{build}'
cache:
- nim-0.17.2_x64.zip
- x86_64-4.9.2-release-win32-seh-rt_v4-rev4.7z
- packages -> **\packages.config
- '%LocalAppData%\NuGet\Cache -> **\packages.config'
- i686-4.9.2-release-win32-dwarf-rt_v4-rev4.7z
# We always want 32 and 64-bit compilation
matrix:
fast_finish: true
fast_finish: false # set this flag to immediately finish build once one of the jobs fails.
environment:
matrix:
- MINGW_ARCHIVE: x86_64-4.9.2-release-win32-seh-rt_v4-rev4.7z
MINGW_DIR: mingw64
MINGW_URL: https://ayera.dl.sourceforge.net/project/mingw-w64/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/4.9.2/threads-win32/seh/x86_64-4.9.2-release-win32-seh-rt_v4-rev4.7z
NIM_ARCHIVE: nim-0.17.2_x64.zip
NIM_DIR: nim-0.17.2
NIM_URL: https://nim-lang.org/download/nim-0.17.2_x64.zip
- MINGW_DIR: mingw32
MINGW_URL: https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/4.9.2/threads-win32/dwarf/i686-4.9.2-release-win32-dwarf-rt_v4-rev4.7z/download
MINGW_ARCHIVE: i686-4.9.2-release-win32-dwarf-rt_v4-rev4.7z
platform: x86
- MINGW_DIR: mingw64
MINGW_URL: https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/4.9.2/threads-win32/seh/x86_64-4.9.2-release-win32-seh-rt_v4-rev4.7z/download
MINGW_ARCHIVE: x86_64-4.9.2-release-win32-seh-rt_v4-rev4.7z
platform: x64
install:
- MKDIR %CD%\tools_tmp
- setlocal EnableExtensions EnableDelayedExpansion
- IF not exist "%MINGW_ARCHIVE%" appveyor DownloadFile "%MINGW_URL%" -FileName "%MINGW_ARCHIVE%"
- 7z x -y "%MINGW_ARCHIVE%" -o"%CD%\tools_tmp"> nul
- IF not exist "%NIM_ARCHIVE%" appveyor DownloadFile "%NIM_URL%" -FileName "%NIM_ARCHIVE%"
- 7z x -y "%NIM_ARCHIVE%" -o"%CD%\tools_tmp"> nul
- SET PATH=%CD%\tools_tmp\%NIM_DIR%\bin;%CD%\tools_tmp\%MINGW_DIR%\bin;%PATH%
- SET PATH=%PATH%;%CD%
- 7z x -y "%MINGW_ARCHIVE%" > nul
- SET PATH=%CD%\%MINGW_DIR%\bin;%CD%\Nim\bin;%PATH%
- git clone https://github.com/nim-lang/Nim.git
- cd %CD%\Nim
- git remote add statusim https://github.com/status-im/Nim.git
- git fetch statusim
- git config --global user.email "you@example.com"
- git config --global user.name "Your Name"
- for /f "tokens=*" %%G IN ('git branch -a --list ^"statusim/status-autopatch-*^"') DO (git merge %%G)
- git clone --depth 1 https://github.com/nim-lang/csources
- cd csources
- IF "%PLATFORM%" == "x64" ( build64.bat ) else ( build.bat )
- cd ..
- bin\nim c koch
- koch boot -d:release
- koch nimble
build_script:
- nimble.exe refresh
- cd C:\projects\%APPVEYOR_PROJECT_SLUG%
- nimble install -y
test_script:
- nimble.exe test
- nimble test
deploy: off

View File

@ -1,43 +1,42 @@
language: c
cache: ccache
matrix:
# allow_failures:
# - os: osx
include:
# Build and test against the master (stable) and devel branches of Nim
# Build and test using both gcc and clang
- os: linux
env: CHANNEL=stable
compiler: gcc
sudo: required
services:
- docker
before_install:
- docker pull statusteam/nim-base
script:
- docker run statusteam/nim-base nim --version
- docker run -v "$(pwd):/project" -w /project statusteam/nim-base sh -c "nimble install -dy && nimble test"
- os: linux
env: CHANNEL=devel
compiler: gcc
# On OSX we only test against clang (gcc is mapped to clang by default)
- os: osx
env: CHANNEL=stable
compiler: clang
before_install:
- brew update
- brew install rocksdb
# - brew install gcc
allow_failures:
# Ignore failures when building against the devel Nim branch
# Also ignore OSX, due to very long build time and Homebrew/curl SSLRead errors
- env: CHANNEL=devel
- os: osx
fast_finish: true
- git clone https://github.com/nim-lang/nim.git
- cd nim
- git remote add statusim https://github.com/status-im/nim.git
- git fetch statusim
- git config --global user.email "you@example.com"
- git config --global user.name "Your Name"
- for b in $(git branch -a --list 'statusim/status-autopatch-*'); do git merge $b; done
- git clone --depth 1 https://github.com/nim-lang/csources.git
- cd csources
- sh build.sh
- cd ..
- export PATH=$PWD/bin:$PATH
- nim c koch
- ./koch boot -d:release
- ./koch nimble
- cd ..
install:
- export CHOOSENIM_NO_ANALYTICS=1
- curl https://nim-lang.org/choosenim/init.sh -sSf > init.sh
- sh init.sh -y
- export PATH=~/.nimble/bin:$PATH
- echo "export PATH=~/.nimble/bin:$PATH" >> ~/.profile
- choosenim $CHANNEL
script:
- nimble refresh
- nimble test
branches:
except:
- gh-pages
script:
- nimble install -dy && nimble test

View File

@ -1,6 +1,6 @@
**Nim Ethash**
[![Build Status (Travis)](https://img.shields.io/travis/status-im/nim-ethash/master.svg?label=Linux%20/%20macOS "Linux/macOS build status (Travis)")](https://travis-ci.org/status-im/nim-ethash)[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0) ![Stability: experimental](https://img.shields.io/badge/stability-experimental-orange.svg)
[![Build Status (Travis)](https://img.shields.io/travis/status-im/nim-ethash/master.svg?label=Linux%20/%20macOS "Linux/macOS build status (Travis)")](https://travis-ci.org/status-im/nim-ethash)[![License: Apache](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0) ![Stability: experimental](https://img.shields.io/badge/stability-experimental-orange.svg)
# Introduction
A pure-Nim implementation of Ethash, the Ethereum proof of work

View File

@ -0,0 +1,230 @@
# Copyright (c) 2018 Status Research & Development GmbH
# Distributed under the Apache v2 License (license terms are at http://www.apache.org/licenses/LICENSE-2.0).
import math, endians,
keccak_tiny
import ../src/private/[primes, conversion, functional, intmath]
import ../src/data_sizes
# ###############################################################################
# Definitions
const
REVISION* = 23 # Based on spec revision 23
WORD_BYTES = 4 # bytes in word - in Nim we use 64 bits words # TODO check that
DATASET_BYTES_INIT* = 2'u^30 # bytes in dataset at genesis
DATASET_BYTES_GROWTH* = 2'u^23 # dataset growth per epoch
CACHE_BYTES_INIT* = 2'u^24 # bytes in cache at genesis
CACHE_BYTES_GROWTH* = 2'u^17 # cache growth per epoch
CACHE_MULTIPLIER = 1024 # Size of the DAG relative to the cache
EPOCH_LENGTH* = 30000 # blocks per epoch
MIX_BYTES* = 128 # width of mix
HASH_BYTES* = 64 # hash length in bytes
DATASET_PARENTS* = 256 # number of parents of each dataset element
CACHE_ROUNDS* = 3 # number of rounds in cache production
ACCESSES* = 64 # number of accesses in hashimoto loop
# ###############################################################################
# Parameters
proc get_cache_size*(block_number: uint): uint {.noSideEffect.}=
result = CACHE_BYTES_INIT + CACHE_BYTES_GROWTH * (block_number div EPOCH_LENGTH)
result -= HASH_BYTES
while (let dm = divmod(result, HASH_BYTES);
dm.rem == 0 and not dm.quot.isPrime):
# In a static lang, checking that the result of a division is prime
# Means checking that reminder == 0 and quotient is prime
result -= 2 * HASH_BYTES
proc get_data_size*(block_number: uint): uint {.noSideEffect.}=
result = DATASET_BYTES_INIT + DATASET_BYTES_GROWTH * (block_number div EPOCH_LENGTH)
result -= MIX_BYTES
while (let dm = divmod(result, MIX_BYTES);
dm.rem == 0 and not dm.quot.isPrime):
result -= 2 * MIX_BYTES
# ###############################################################################
# Fetch from lookup tables of 2048 epochs of data sizes and cache sizes
proc get_datasize_lut*(block_number: Natural): uint64 {.noSideEffect, inline.} =
data_sizes[block_number div EPOCH_LENGTH]
proc get_cachesize_lut*(block_number: Natural): uint64 {.noSideEffect, inline.} =
cache_sizes[block_number div EPOCH_LENGTH]
# ###############################################################################
# Cache generation
proc mkcache*(cache_size: uint64, seed: Hash[256]): seq[Hash[512]] {.noSideEffect.}=
# Cache size
let n = int(cache_size div HASH_BYTES)
# Sequentially produce the initial dataset
result = newSeq[Hash[512]](n)
result[0] = keccak512 seed.data
for i in 1 ..< n:
result[i] = keccak512 result[i-1].data
# Use a low-round version of randmemohash
for _ in 0 ..< CACHE_ROUNDS:
for i in 0 ..< n:
let
v = result[i].as_u32_words[0] mod n.uint32
a = result[(i-1+n) mod n].data
b = result[v.int].data
result[i] = keccak512 zipMap(a, b, x xor y)
# ###############################################################################
# Data aggregation function
const FNV_PRIME = 0x01000193
proc fnv*[T: SomeUnsignedInt or Natural](v1, v2: T): uint32 {.inline, noSideEffect.}=
# Original formula is ((v1 * FNV_PRIME) xor v2) mod 2^32
# However contrary to Python and depending on the type T,
# in Nim (v1 * FNV_PRIME) can overflow
# We can't do 2^32 with an int (only 2^32-1)
# and in general (a xor b) mod c != (a mod c) xor (b mod c)
#
# Thankfully
# We know that:
# - (a xor b) and c == (a and c) xor (b and c)
# - for powers of 2: a mod 2^p == a and (2^p - 1)
# - 2^32 - 1 == high(uint32)
# So casting to uint32 should do the modulo and masking just fine
(v1.uint32 * FNV_PRIME) xor v2.uint32
# ###############################################################################
# Full dataset calculation
proc calc_dataset_item*(cache: seq[Hash[512]], i: Natural): Hash[512] {.noSideEffect, noInit.} =
let n = cache.len
const r: uint32 = HASH_BYTES div WORD_BYTES
# Alias for the result value. Interpreted as an array of uint32 words
var mix = cast[ptr array[16, uint32]](addr result)
mix[] = cache[i mod n].as_u32_words
when system.cpuEndian == littleEndian:
mix[0] = mix[0] xor i.uint32
else:
mix[high(mix)] = mix[high(mix)] xor i.uint32
result = keccak512 mix[]
# FNV with a lots of random cache nodes based on i
for j in 0'u32 ..< DATASET_PARENTS:
let cache_index = fnv(i.uint32 xor j, mix[j mod r])
mix[] = zipMap(mix[], cache[cache_index.int mod n].as_u32_words, fnv(x, y))
result = keccak512 mix[]
when defined(openmp):
# Remove stacktraces when using OpenMP, heap alloc from strings will crash.
{.push stacktrace: off.}
proc calc_dataset*(full_size: Natural, cache: seq[Hash[512]]): seq[Hash[512]] =
result = newSeq[Hash[512]](full_size div HASH_BYTES)
for i in `||`(0, result.len - 1, "simd"):
# OpenMP loop
result[i] = calc_dataset_item(cache, i)
when defined(openmp):
# Remove stacktraces when using OpenMP, heap alloc from strings will crash.
{.pop.}
# ###############################################################################
# Main loop
type HashimotoHash = tuple[mix_digest, value: Hash[256]]
template hashimoto(header: Hash[256],
nonce: uint64,
full_size: Natural,
dataset_lookup_p: untyped,
dataset_lookup_p1: untyped,
result: var HashimotoHash
) =
let
n = uint32 full_size div HASH_BYTES
w = uint32 MIX_BYTES div WORD_BYTES
mixhashes = uint32 MIX_BYTES div HASH_BYTES
assert full_size mod HASH_BYTES == 0
assert MIX_BYTES mod HASH_BYTES == 0
# combine header+nonce into a 64 byte seed
var s{.noInit.}: Hash[512]
let s_bytes = cast[ptr array[64, byte]](addr s) # Alias for to interpret s as a byte array
let s_words = cast[ptr array[16, uint32]](addr s) # Alias for to interpret s as an uint32 array
s_bytes[][0..<32] = header.data # We first populate the first 40 bytes of s with the concatenation
# In template we need to dereference first otherwise it's not considered as var
var nonceLE{.noInit.}: array[8, byte] # the nonce should be concatenated with its LITTLE ENDIAN representation
littleEndian64(addr nonceLE, unsafeAddr nonce)
s_bytes[][32..<40] = cast[array[8,byte]](nonceLE)
s = keccak_512 s_bytes[][0..<40] # TODO: Does this allocate a seq?
# start the mix with replicated s
assert MIX_BYTES div HASH_BYTES == 2
var mix{.noInit.}: array[32, uint32]
mix[0..<16] = s_words[]
mix[16..<32] = s_words[]
# mix in random dataset nodes
for i in 0'u32 ..< ACCESSES:
let p{.inject.} = fnv(i xor s_words[0], mix[i mod w]) mod (n div mixhashes) * mixhashes
let p1{.inject.} = p + 1
# Unrolled: for j in range(MIX_BYTES / HASH_BYTES): => for j in 0 ..< 2
var newdata{.noInit.}: type mix
newdata[0..<16] = cast[array[16, uint32]](dataset_lookup_p)
newdata[16..<32] = cast[array[16, uint32]](dataset_lookup_p1)
mix = zipMap(mix, newdata, fnv(x, y))
# compress mix
# ⚠⚠ Warning ⚠⚠: Another bigEndian littleEndian issue?
# It doesn't seem like the uint32 in cmix need to be changed to big endian
# cmix is an alias to the result.mix_digest
let cmix = cast[ptr array[8, uint32]](addr result.mix_digest)
for i in countup(0, mix.len - 1, 4):
cmix[i div 4] = mix[i].fnv(mix[i+1]).fnv(mix[i+2]).fnv(mix[i+3])
var concat{.noInit.}: array[64 + 32, byte]
concat[0..<64] = s_bytes[]
concat[64..<96] = cast[array[32, byte]](result.mix_digest)
result.value = keccak_256(concat)
proc hashimoto_light*(full_size:Natural, cache: seq[Hash[512]],
header: Hash[256], nonce: uint64): HashimotoHash {.noSideEffect.} =
hashimoto(header,
nonce,
full_size,
calc_data_set_item(cache, p),
calc_data_set_item(cache, p1),
result)
proc hashimoto_full*(full_size:Natural, dataset: seq[Hash[512]],
header: Hash[256], nonce: uint64): HashimotoHash {.noSideEffect.} =
# TODO spec mentions full_size but I don't think we need it (retrieve it from dataset.len)
hashimoto(header,
nonce,
full_size,
dataset[int(p)],
dataset[int(p1)],
result)
# ###############################################################################
# Defining the seed hash
proc get_seedhash*(block_number: uint64): Hash[256] {.noSideEffect.} =
for i in 0 ..< int(block_number div EPOCH_LENGTH):
result = keccak256 result.data

View File

@ -7,7 +7,7 @@ srcDir = "src"
### Dependencies
requires "nim >= 0.18.0", "keccak_tiny >= 0.1.0"
requires "nim >= 0.18.0", "nimcrypto >= 0.1.0"
proc test(name: string, lang: string = "c") =
if not dirExists "build":

View File

@ -1,8 +1,8 @@
# Copyright (c) 2018 Status Research & Development GmbH
# Distributed under the Apache v2 License (license terms are at http://www.apache.org/licenses/LICENSE-2.0).
import ./proof_of_work, ./private/casting
import endians, random, math
import ./proof_of_work, ./private/conversion
import endians, random, math, nimcrypto
proc mulCarry(a, b: uint64): tuple[carry, unit: uint64] =
## Multiplication in extended precision
@ -63,8 +63,8 @@ proc mulCarry(a, b: uint64): tuple[carry, unit: uint64] =
proc isValid(nonce: uint64,
difficulty: uint64,
full_size: Natural,
dataset: seq[Hash[512]],
header: Hash[256]): bool {.noSideEffect.}=
dataset: seq[MDigest[512]],
header: MDigest[256]): bool {.noSideEffect.}=
# Boundary is 2^256/difficulty
# A valid nonce will have: hashimoto < 2^256/difficulty
# We can't represent 2^256 as an uint256 so as a workaround we use:
@ -113,14 +113,13 @@ proc isValid(nonce: uint64,
result = carry == 0
# const High_uint64 = not 0'u64 # TODO: Nim random does not work on uint64 range.
proc mine*(full_size: Natural, dataset: seq[Hash[512]], header: Hash[256], difficulty: uint64): uint64 =
proc mine*(full_size: Natural, dataset: seq[MDigest[512]], header: MDigest[256], difficulty: uint64): uint64 =
# Returns a valid nonce
randomize() # Start with a completely random seed
result = uint64 random(high(int)) # TODO: Nim random does not work on uint64 range.
# Also random is deprecated in devel and does not include the end of the range.
result = uint64 rand(high(int)) # TODO: Nim rand does not work on uint64 range.
while not result.isValid(difficulty, full_size, dataset, header):
inc(result) # we rely on uint overflow (mod 2^64) here.

View File

@ -1,15 +1,12 @@
# Copyright (c) 2018 Status Research & Development GmbH
# Distributed under the Apache v2 License (license terms are at http://www.apache.org/licenses/LICENSE-2.0).
import keccak_tiny
import nimcrypto
proc as_u32_words*[N: static[int]](x: Hash[N]): array[N div 32, uint32] {.inline, noSideEffect, noInit.}=
proc as_u32_words*[bits: static[int]](x: MDigest[bits]): array[bits div 32, uint32] {.inline, noSideEffect, noInit.}=
# Convert an hash to its uint32 representation
cast[type result](x)
type ByteArrayBE*[N: static[int]] = array[N, byte]
## A byte array that stores bytes in big-endian order
proc readHexChar(c: char): byte {.noSideEffect.}=
## Converts an hex char to a byte
case c
@ -19,7 +16,7 @@ proc readHexChar(c: char): byte {.noSideEffect.}=
else:
raise newException(ValueError, $c & "is not a hexademical character")
proc hexToByteArrayBE*[N: static[int]](hexStr: string): ByteArrayBE[N] {.noSideEffect, noInit.}=
proc hexToByteArrayBE*[N: static[int]](hexStr: string): array[N, byte] {.noSideEffect, noInit.}=
## Read an hex string and store it in a Byte Array in Big-Endian order
var i = 0
if hexStr[i] == '0' and (hexStr[i+1] == 'x' or hexStr[i+1] == 'X'):
@ -44,7 +41,7 @@ proc hexToSeqBytesBE*(hexStr: string): seq[byte] {.noSideEffect.}=
result[i] = hexStr[2*i].readHexChar shl 4 or hexStr[2*i+1].readHexChar
inc(i)
proc toHex*[N: static[int]](ba: ByteArrayBE[N]): string {.noSideEffect.}=
proc toHex*[N: static[int]](ba: array[N, byte]): string {.noSideEffect.}=
## Convert a big-endian byte array to its hex representation
## Output is in lowercase
@ -68,7 +65,7 @@ proc toHex*(ba: seq[byte]): string {.noSideEffect, noInit.}=
result[2*i] = hexChars[int ba[i] shr 4 and 0xF]
result[2*i+1] = hexChars[int ba[i] and 0xF]
proc toByteArrayBE*[T: SomeInteger](num: T): ByteArrayBE[T.sizeof] {.noSideEffect, noInit, inline.}=
proc toByteArrayBE*[T: SomeInteger](num: T): array[T.sizeof, byte] {.noSideEffect, noInit, inline.}=
## Convert an int (in native host endianness) to a big-endian byte array
# Note: only works on devel
@ -81,5 +78,5 @@ proc toByteArrayBE*[T: SomeInteger](num: T): ByteArrayBE[T.sizeof] {.noSideEffec
for i in 0 ..< N:
result[i] = byte(num shr T((N-1-i) * 8))
proc toByteArrayBE*[N: static[int]](x: Hash[N]): ByteArrayBE[N div 8] {.inline, noSideEffect, noInit.}=
cast[type result](x.data)
proc toByteArrayBE*[bits: static[int]](x: MDigest[bits]): array[bits div 8, byte] {.inline, noSideEffect, noInit.}=
cast[type result](x.data)

View File

@ -4,8 +4,6 @@
# Pending https://github.com/alehander42/zero-functional/issues/6
# A zip + map that avoids heap allocation
import ./casting
iterator enumerateZip[N: static[int], T, U](
a: array[N, T],
b: array[N, U]
@ -28,10 +26,11 @@ template zipMap*[N: static[int], T, U](
op
))
var result: array[N, outType]
{.pragma: align64, codegenDecl: "$# $# __attribute__((aligned(64)))".}
var result{.noInit, align64.}: array[N, outType]
for i, x {.inject.}, y {.inject.} in enumerateZip(a, b):
{.unroll: 4.}
{.unroll: 4.} # This is a no-op at the moment
result[i] = op
result

View File

@ -2,11 +2,10 @@
# Distributed under the Apache v2 License (license terms are at http://www.apache.org/licenses/LICENSE-2.0).
import math, endians,
keccak_tiny
nimcrypto
import ./private/[primes, casting, functional, intmath]
import ./private/[primes, conversion, functional, intmath]
export toHex, hexToByteArrayBE, hexToSeqBytesBE, toByteArrayBE # debug functions
export keccak_tiny
# ###############################################################################
# Definitions
@ -58,17 +57,17 @@ proc get_cachesize_lut*(block_number: Natural): uint64 {.noSideEffect, inline.}
# ###############################################################################
# Cache generation
proc mkcache*(cache_size: uint64, seed: Hash[256]): seq[Hash[512]] {.noSideEffect.}=
proc mkcache*(cache_size: uint64, seed: MDigest[256]): seq[MDigest[512]] {.noSideEffect.}=
# Cache size
let n = int(cache_size div HASH_BYTES)
# Sequentially produce the initial dataset
result = newSeq[Hash[512]](n)
result[0] = keccak512 seed.data
result = newSeq[MDigest[512]](n)
result[0] = keccak512.digest seed.data
for i in 1 ..< n:
result[i] = keccak512 result[i-1].data
result[i] = keccak512.digest result[i-1].data
# Use a low-round version of randmemohash
for _ in 0 ..< CACHE_ROUNDS:
@ -77,7 +76,7 @@ proc mkcache*(cache_size: uint64, seed: Hash[256]): seq[Hash[512]] {.noSideEffec
v = result[i].as_u32_words[0] mod n.uint32
a = result[(i-1+n) mod n].data
b = result[v.int].data
result[i] = keccak512 zipMap(a, b, x xor y)
result[i] = keccak512.digest zipMap(a, b, x xor y)
# ###############################################################################
# Data aggregation function
@ -105,7 +104,7 @@ proc fnv*[T: SomeUnsignedInt or Natural](v1, v2: T): uint32 {.inline, noSideEffe
# ###############################################################################
# Full dataset calculation
proc calc_dataset_item*(cache: seq[Hash[512]], i: Natural): Hash[512] {.noSideEffect, noInit.} =
proc calc_dataset_item*(cache: seq[MDigest[512]], i: Natural): MDigest[512] {.noSideEffect, noInit.} =
let n = cache.len
const r: uint32 = HASH_BYTES div WORD_BYTES
@ -117,21 +116,21 @@ proc calc_dataset_item*(cache: seq[Hash[512]], i: Natural): Hash[512] {.noSideEf
mix[0] = mix[0] xor i.uint32
else:
mix[high(mix)] = mix[high(mix)] xor i.uint32
result = keccak512 mix[]
result = keccak512.digest mix[]
# FNV with a lots of random cache nodes based on i
for j in 0'u32 ..< DATASET_PARENTS:
let cache_index = fnv(i.uint32 xor j, mix[j mod r])
mix[] = zipMap(mix[], cache[cache_index.int mod n].as_u32_words, fnv(x, y))
result = keccak512 mix[]
result = keccak512.digest mix[]
when defined(openmp):
# Remove stacktraces when using OpenMP, heap alloc from strings will crash.
{.push stacktrace: off.}
proc calc_dataset*(full_size: Natural, cache: seq[Hash[512]]): seq[Hash[512]] =
proc calc_dataset*(full_size: Natural, cache: seq[MDigest[512]]): seq[MDigest[512]] =
result = newSeq[Hash[512]](full_size div HASH_BYTES)
result = newSeq[MDigest[512]](full_size div HASH_BYTES)
for i in `||`(0, result.len - 1, "simd"):
# OpenMP loop
result[i] = calc_dataset_item(cache, i)
@ -143,9 +142,9 @@ when defined(openmp):
# ###############################################################################
# Main loop
type HashimotoHash = tuple[mix_digest, value: Hash[256]]
type HashimotoHash = tuple[mix_digest, value: MDigest[256]]
template hashimoto(header: Hash[256],
template hashimoto(header: MDigest[256],
nonce: uint64,
full_size: Natural,
dataset_lookup_p: untyped,
@ -161,7 +160,8 @@ template hashimoto(header: Hash[256],
assert MIX_BYTES mod HASH_BYTES == 0
# combine header+nonce into a 64 byte seed
var s{.noInit.}: Hash[512]
{.pragma: align64, codegenDecl: "$# $# __attribute__((aligned(64)))".}
var s{.align64, noInit.}: MDigest[512]
let s_bytes = cast[ptr array[64, byte]](addr s) # Alias for to interpret s as a byte array
let s_words = cast[ptr array[16, uint32]](addr s) # Alias for to interpret s as an uint32 array
@ -172,11 +172,11 @@ template hashimoto(header: Hash[256],
littleEndian64(addr nonceLE, unsafeAddr nonce)
s_bytes[][32..<40] = cast[array[8,byte]](nonceLE)
s = keccak_512 s_bytes[][0..<40] # TODO: Does this allocate a seq?
s = keccak_512.digest s_bytes[][0..<40] # TODO: Does this slicing allocate a seq?
# start the mix with replicated s
assert MIX_BYTES div HASH_BYTES == 2
var mix{.noInit.}: array[32, uint32]
var mix{.align64, noInit.}: array[32, uint32]
mix[0..<16] = s_words[]
mix[16..<32] = s_words[]
@ -203,10 +203,10 @@ template hashimoto(header: Hash[256],
var concat{.noInit.}: array[64 + 32, byte]
concat[0..<64] = s_bytes[]
concat[64..<96] = cast[array[32, byte]](result.mix_digest)
result.value = keccak_256(concat)
result.value = keccak_256.digest concat
proc hashimoto_light*(full_size:Natural, cache: seq[Hash[512]],
header: Hash[256], nonce: uint64): HashimotoHash {.noSideEffect.} =
proc hashimoto_light*(full_size:Natural, cache: seq[MDigest[512]],
header: MDigest[256], nonce: uint64): HashimotoHash {.noSideEffect.} =
hashimoto(header,
nonce,
@ -215,8 +215,8 @@ proc hashimoto_light*(full_size:Natural, cache: seq[Hash[512]],
calc_data_set_item(cache, p1),
result)
proc hashimoto_full*(full_size:Natural, dataset: seq[Hash[512]],
header: Hash[256], nonce: uint64): HashimotoHash {.noSideEffect.} =
proc hashimoto_full*(full_size:Natural, dataset: seq[MDigest[512]],
header: MDigest[256], nonce: uint64): HashimotoHash {.noSideEffect.} =
# TODO spec mentions full_size but I don't think we need it (retrieve it from dataset.len)
hashimoto(header,
nonce,
@ -227,6 +227,6 @@ proc hashimoto_full*(full_size:Natural, dataset: seq[Hash[512]],
# ###############################################################################
# Defining the seed hash
proc get_seedhash*(block_number: uint64): Hash[256] {.noSideEffect.} =
proc get_seedhash*(block_number: uint64): MDigest[256] {.noSideEffect.} =
for i in 0 ..< int(block_number div EPOCH_LENGTH):
result = keccak256 result.data
result = keccak256.digest result.data

View File

@ -1,7 +1,7 @@
# Copyright (c) 2018 Status Research & Development GmbH
# Distributed under the Apache v2 License (license terms are at http://www.apache.org/licenses/LICENSE-2.0).
import ../src/ethash, unittest, keccak_tiny, times, strutils
import ../src/ethash, unittest, times, strutils, nimcrypto
suite "Test mining":
@ -12,7 +12,7 @@ suite "Test mining":
let
blck = 22'u # block number
cache = mkcache(get_cachesize(blck), get_seedhash(blck))
header = cast[Hash[256]](
header = cast[MDigest[256]](
hexToByteArrayBE[32]("372eca2454ead349c3df0ab5d00b0b706b23e49d469387db91811cee0358fc6d")
)
difficulty = 132416'u64

View File

@ -1,8 +1,7 @@
# Copyright (c) 2018 Status Research & Development GmbH
# Distributed under the Apache v2 License (license terms are at http://www.apache.org/licenses/LICENSE-2.0).
import ../src/ethash, unittest, strutils, algorithm, random, sequtils,
keccak_tiny
import ../src/ethash, unittest, strutils, algorithm, random, sequtils, nimcrypto
suite "Base hashing algorithm":
@ -21,8 +20,8 @@ suite "Base hashing algorithm":
let
input = "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"
expected = "2b5ddf6f4d21c23de216f44d5e4bdc68e044b71897837ea74c83908be7037cd7".toUpperASCII
actual = toUpperASCII($input.keccak_256) # using keccak built-in conversion proc
actual2 = cast[array[256 div 8, byte]](input.keccak_256).toHex.toUpperAscii
actual = toUpperASCII($keccak256.digest(input)) # using keccak built-in conversion proc
actual2 = cast[array[256 div 8, byte]](keccak_256.digest(input)).toHex.toUpperAscii
check: expected == actual
check: expected == actual2
@ -32,8 +31,8 @@ suite "Base hashing algorithm":
let
input = "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"
expected = "0be8a1d334b4655fe58c6b38789f984bb13225684e86b20517a55ab2386c7b61c306f25e0627c60064cecd6d80cd67a82b3890bd1289b7ceb473aad56a359405".toUpperASCII
actual = toUpperASCII($input.keccak_512) # using keccak built-in conversion proc
actual2 = cast[array[512 div 8, byte]](input.keccak_512).toHex.toUpperAscii
actual = toUpperASCII($keccak512.digest(input)) # using keccak built-in conversion proc
actual2 = cast[array[512 div 8, byte]](keccak_512.digest(input)).toHex.toUpperAscii
check: expected == actual
check: expected == actual2
@ -117,7 +116,7 @@ suite "Cache initialization":
# https://github.com/ethereum/ethash/blob/f5f0a8b1962544d2b6f40df8e4b0d9a32faf8f8e/test/python/test_pyethash.py#L31-L36
test "Mkcache":
let actual_str = "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"
var actual_hash: Hash[256]
var actual_hash: MDigest[256]
copyMem(addr actual_hash, unsafeAddr actual_str[0], 256 div 8)
let
@ -136,10 +135,10 @@ suite "Seed hash":
check: $get_seedhash(0) == zeroHex
test "Seed hash of the next 2048 epochs (2048 * 30000 blocks)":
var expected: Hash[256]
var expected: MDigest[256]
for i in countup(0'u32, 30000 * 2048, 30000):
check: get_seedhash(i) == expected
expected = keccak_256(expected.data)
expected = keccak_256.digest(expected.data)
suite "Dagger hashimoto computation":
# We can't replicate Python's dynamic typing here
@ -151,11 +150,11 @@ suite "Dagger hashimoto computation":
cache_str = "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"
header_str = "~~~~~X~~~~~~~~~~~~~~~~~~~~~~~~~~"
var cache_hash: Hash[256]
var cache_hash: MDigest[256]
copyMem(addr cache_hash, unsafeAddr cache_str[0], 256 div 8)
let cache = mkcache(cache_size, cache_hash)
var header: Hash[256]
var header: MDigest[256]
copyMem(addr header, unsafeAddr header_str[0], 256 div 8)
let full = calc_dataset(full_size, cache)
@ -168,7 +167,7 @@ suite "Dagger hashimoto computation":
test "Real dataset and recomputation from cache matches":
# https://github.com/ethereum/ethash/blob/f5f0a8b1962544d2b6f40df8e4b0d9a32faf8f8e/test/c/test.cpp#L360-L374
for i in 0 ..< full_size div sizeof(Hash[512]):
for i in 0 ..< full_size div sizeof(MDigest[512]):
for j in 0 ..< 32:
let expected = calc_dataset_item(cache, j)
check: full[j] == expected
@ -183,7 +182,7 @@ suite "Dagger hashimoto computation":
let full_result = hashimoto_full(full_size, dataset, header, 0)
# Check not null
var zero_hash : Hash[256]
var zero_hash : MDigest[256]
check: light_result.mix_digest != zero_hash
check: light_result.value != zero_hash
check: light_result == full_result
@ -194,7 +193,7 @@ suite "Real blocks test":
# POC-9 testnet, epoch 0
let blck = 22'u # block number
let cache = mkcache(get_cachesize(blck), get_seedhash(blck))
let header = cast[Hash[256]](
let header = cast[MDigest[256]](
hexToByteArrayBE[32]("372eca2454ead349c3df0ab5d00b0b706b23e49d469387db91811cee0358fc6d")
)
@ -205,10 +204,10 @@ suite "Real blocks test":
0x495732e0ed7a801c'u
)
check: light.value == cast[Hash[256]](
check: light.value == cast[MDigest[256]](
hexToByteArrayBE[32]("00000b184f1fdd88bfd94c86c39e65db0c36144d5e43f745f722196e730cb614")
)
check: light.mixDigest == cast[Hash[256]](
check: light.mixDigest == cast[MDigest[256]](
hexToByteArrayBE[32]("2f74cdeb198af0b9abe65d22d372e22fb2d474371774a9583c1cc427a07939f5")
)
@ -217,7 +216,7 @@ suite "Real blocks test":
# POC-9 testnet, epoch 1
let blck = 30001'u # block number
let cache = mkcache(get_cachesize(blck), get_seedhash(blck))
let header = cast[Hash[256]](
let header = cast[MDigest[256]](
hexToByteArrayBE[32]("7e44356ee3441623bc72a683fd3708fdf75e971bbe294f33e539eedad4b92b34")
)
@ -228,7 +227,7 @@ suite "Real blocks test":
0x318df1c8adef7e5e'u
)
check: light.mixDigest == cast[Hash[256]](
check: light.mixDigest == cast[MDigest[256]](
hexToByteArrayBE[32]("144b180aad09ae3c81fb07be92c8e6351b5646dda80e6844ae1b697e55ddde84")
)
@ -237,7 +236,7 @@ suite "Real blocks test":
# POC-9 testnet, epoch 2
let blck = 60000'u # block number
let cache = mkcache(get_cachesize(blck), get_seedhash(blck))
let header = cast[Hash[256]](
let header = cast[MDigest[256]](
hexToByteArrayBE[32]("5fc898f16035bf5ac9c6d9077ae1e3d5fc1ecc3c9fd5bee8bb00e810fdacbaa0")
)
@ -248,6 +247,6 @@ suite "Real blocks test":
0x50377003e5d830ca'u
)
check: light.mixDigest == cast[Hash[256]](
check: light.mixDigest == cast[MDigest[256]](
hexToByteArrayBE[32]("ab546a5b73c452ae86dadd36f0ed83a6745226717d3798832d1b20b489e82063")
)