markspanbroek 4175689745
Load purchase state from chain (#283)
* [purchasing] Simplify test

* [utils] Move StorageRequest.example up one level

* [purchasing] Load purchases from market

* [purchasing] load purchase states

* Implement myRequest() and getState() methods for OnChainMarket

* [proofs] Fix intermittently failing tests

Ensures that examples of proofs in tests are never of length 0;
these are considered invalid proofs by the smart contract logic.

* [contracts] Fix failing test

With the new solidity contracts update, a contract can only
be paid out after it started.

* [market] Add method to get request end time

* [purchasing] wait until purchase is finished

Purchase.wait() would previously wait until purchase
was started, now we wait until it is finished.

* [purchasing] Handle 'finished' and 'failed' states

* [marketplace] move to failed state once request fails

- Add support for subscribing to request failure events.
- Add supporting contract tests for subscribing to request failure events.
- Allow the PurchaseStarted state to move to PurchaseFailure once a request failure event is emitted
- Add supporting tests for moving from PurchaseStarted to PurchaseFailure
- Add state transition tests for PurchaseUnknown.

* [marketplace] Fix test with longer sleepAsync

* [integration] Add function to restart a codex node

* [purchasing] Set client address before requesting storage

To prevent the purchase id (which equals the request id)
from changing once it's been submitted.

* [contracts] Fix: OnChainMarket.getState()

Had the wrong method signature before

* [purchasing] Load purchases on node start

* [purchasing] Rename state 'PurchaseError' to 'PurchaseErrored'

Allows for an exception type called 'PurchaseError'

* [purchasing] Load purchases in background

No longer calls market.getRequest() for every purchase
on node start.

* [contracts] Add `$` for RequestId, SlotId and Nonce

To aid with debugging

* [purchasing] Add Purchasing.stop()

To ensure that all contract interactions have both a
start() and a stop() for

* [tests] Remove sleepAsync where possible

Use `eventually` loop instead, to make sure that we're
not waiting unnecessarily.

* [integration] Fix: handle non-json response in test

* [purchasing] Add purchase state to json

* [integration] Ensure that purchase is submitted before restart

Fixes test failure on slower CI

* [purchasing] re-implement `description` as method

Allows description to be set in the same module where the
state type is defined.

Co-authored-by: Eric Mastro <eric.mastro@gmail.com>

* [contracts] fix typo

Co-authored-by: Eric Mastro <eric.mastro@gmail.com>

* [market] Use more generic error type

Should we decide to change the provider type later

Co-authored-by: Eric Mastro <eric.mastro@gmail.com>

Co-authored-by: Eric Mastro <eric.mastro@gmail.com>
2022-11-08 08:10:17 +01:00
2022-08-23 10:11:21 -06:00
2021-02-02 19:29:52 +01:00
2021-12-20 13:12:18 -06:00
2021-11-16 16:51:24 +01:00
2022-09-12 11:03:27 -06:00

Codex Decentralized Durability Engine

The Codex project aims to create a decentralized durability engine that allows persisting data in p2p networks. In other words, it allows storing files and data with predictable durability guarantees for later retrieval.

WARNING: This project is under active development and is considered pre-alpha.

License: Apache License: MIT Stability: experimental CI Codecov Discord

Build and Run

For detailed instructions on preparing to build nim-codex see Building Codex.

To build the project, clone it and run:

make update && make exec

The executable will be placed under the build directory under the project root.

Run the client with:

build/codex

CLI Options

build/codex --help
Usage:

codex [OPTIONS]... command

The following options are available:

     --log-level            Sets the log level [=LogLevel.INFO].
     --metrics              Enable the metrics server [=false].
     --metrics-address      Listening address of the metrics server [=127.0.0.1].
     --metrics-port         Listening HTTP port of the metrics server [=8008].
 -d, --data-dir             The directory where codex will store configuration and data..
 -l, --listen-port          Specifies one or more listening ports for the node to listen on. [=0].
 -i, --listen-ip            The public IP [=0.0.0.0].
     --udp-port             Specify the discovery (UDP) port [=8090].
     --net-privkey          Source of network (secp256k1) private key file (random|<path>) [=random].
 -b, --bootstrap-node       Specifies one or more bootstrap nodes to use when connecting to the network..
     --max-peers            The maximum number of peers to connect to [=160].
     --agent-string         Node agent string which is used as identifier in network [=Codex].
 -p, --api-port             The REST Api port [=8080].
 -c, --cache-size           The size in MiB of the block cache, 0 disables the cache [=100].
     --persistence          Enables persistence mechanism, requires an Ethereum node [=false].
     --eth-provider         The URL of the JSON-RPC API of the Ethereum node [=ws://localhost:8545].
     --eth-account          The Ethereum account that is used for storage contracts [=EthAddress.none].
     --eth-deployment       The json file describing the contract deployment [=string.none].

Available sub-commands:

codex initNode

Example: running two Codex clients

build/codex --data-dir="$(pwd)/Codex1" -i=127.0.0.1

This will start codex with a data directory pointing to Codex1 under the current execution directory and announce itself on the DHT under 127.0.0.1.

To run a second client that automatically discovers nodes on the network, we need to get the Signed Peer Record (SPR) of first client, Client1. We can do this by querying the /info endpoint of the node's REST API.

curl http://127.0.0.1:8080/api/codex/v1/info

This should output information about Client1, including its PeerID, TCP/UDP addresses, data directory, and SPR:

{
  "id": "16Uiu2HAm92LGXYTuhtLaZzkFnsCx6FFJsNmswK6o9oPXFbSKHQEa",
  "addrs": [
    "/ip4/0.0.0.0/udp/8090",
    "/ip4/0.0.0.0/tcp/49336"
  ],
  "repo": "/repos/status-im/nim-codex/Codex1",
  "spr": "spr:CiUIAhIhAmqg5fVU2yxPStLdUOWgwrkWZMHW2MHf6i6l8IjA4tssEgIDARpICicAJQgCEiECaqDl9VTbLE9K0t1Q5aDCuRZkwdbYwd_qLqXwiMDi2ywQ5v2VlAYaCwoJBH8AAAGRAh-aGgoKCAR_AAABBts3KkcwRQIhAPOKl38CviplVbMVnA_9q3N1K_nk5oGuNp7DWeOqiJzzAiATQ2acPyQvPxLU9YS-TiVo4RUXndRcwMFMX2Yjhw8k3A"
}

Now, let's start a second client, Client2. Because we're already using the default ports TCP (:8080) and UDP (:8090) for the first client, we have to specify new ports to avoid a collision. Additionally, we can specify the SPR from Client1 as the bootstrap node for discovery purposes, allowing Client2 to determine where content is located in the network.

build/codex --data-dir="$(pwd)/Codex2" -i=127.0.0.1 --api-port=8081 --udp-port=8091 --bootstrap-node=spr:CiUIAhIhAmqg5fVU2yxPStLdUOWgwrkWZMHW2MHf6i6l8IjA4tssEgIDARpICicAJQgCEiECaqDl9VTbLE9K0t1Q5aDCuRZkwdbYwd_qLqXwiMDi2ywQ5v2VlAYaCwoJBH8AAAGRAh-aGgoKCAR_AAABBts3KkcwRQIhAPOKl38CviplVbMVnA_9q3N1K_nk5oGuNp7DWeOqiJzzAiATQ2acPyQvPxLU9YS-TiVo4RUXndRcwMFMX2Yjhw8k3A

There are now two clients running. We could upload a file to Client1 and download that file (given its CID) using Client2, by using the clients' REST API.

Interacting with the client

The client exposes a REST API that can be used to interact with the clients. These commands could be invoked with any HTTP client, however the following endpoints assume the use of the curl command.

/api/codex/v1/connect/{peerId}

Connect to a peer identified by its peer id. Takes an optional addrs parameter with a list of valid multiaddresses. If addrs is absent, the peer will be discovered over the DHT.

Example:

curl "127.0.0.1:8080/api/codex/v1/connect/<peer id>?addrs=<multiaddress>"

/api/codex/v1/download/{id}

Download data identified by a Cid.

Example:

 curl -vvv "127.0.0.1:8080/api/codex/v1/download/<Cid of the content>" --output <name of output file>

/api/codex/v1/upload

Upload a file, upon success returns the Cid of the uploaded file.

Example:

curl -vvv -H "content-type: application/octet-stream" -H Expect: -T "<path to file>" "127.0.0.1:8080/api/codex/v1/upload" -X POST

/api/codex/v1/info

Get useful node info such as its peer id, address and SPR.

Example:

curl -vvv "127.0.0.1:8080/api/codex/v1/info"
Description
Decentralized Durability Engine
Readme
Languages
Nim 98.6%
Makefile 0.8%
Shell 0.5%