mobile/f32/mat4.go

194 lines
5.0 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package f32
import "fmt"
// A Mat4 is a 4x4 matrix of float32 values.
// Elements are indexed first by row then column, i.e. m[row][column].
type Mat4 [4]Vec4
func (m Mat4) String() string {
return fmt.Sprintf(`Mat4[% 0.3f, % 0.3f, % 0.3f, % 0.3f,
% 0.3f, % 0.3f, % 0.3f, % 0.3f,
% 0.3f, % 0.3f, % 0.3f, % 0.3f,
% 0.3f, % 0.3f, % 0.3f, % 0.3f]`,
m[0][0], m[0][1], m[0][2], m[0][3],
m[1][0], m[1][1], m[1][2], m[1][3],
m[2][0], m[2][1], m[2][2], m[2][3],
m[3][0], m[3][1], m[3][2], m[3][3])
}
func (m *Mat4) Identity() {
*m = Mat4{
{1, 0, 0, 0},
{0, 1, 0, 0},
{0, 0, 1, 0},
{0, 0, 0, 1},
}
}
func (m *Mat4) Eq(n *Mat4, epsilon float32) bool {
for i := range m {
for j := range m[i] {
diff := m[i][j] - n[i][j]
if diff < -epsilon || +epsilon < diff {
return false
}
}
}
return true
}
// Mul stores a × b in m.
func (m *Mat4) Mul(a, b *Mat4) {
// Store the result in local variables, in case m == a || m == b.
m00 := a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0] + a[0][3]*b[3][0]
m01 := a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1] + a[0][3]*b[3][1]
m02 := a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2] + a[0][3]*b[3][2]
m03 := a[0][0]*b[0][3] + a[0][1]*b[1][3] + a[0][2]*b[2][3] + a[0][3]*b[3][3]
m10 := a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0] + a[1][3]*b[3][0]
m11 := a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1] + a[1][3]*b[3][1]
m12 := a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2] + a[1][3]*b[3][2]
m13 := a[1][0]*b[0][3] + a[1][1]*b[1][3] + a[1][2]*b[2][3] + a[1][3]*b[3][3]
m20 := a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0] + a[2][3]*b[3][0]
m21 := a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1] + a[2][3]*b[3][1]
m22 := a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2] + a[2][3]*b[3][2]
m23 := a[2][0]*b[0][3] + a[2][1]*b[1][3] + a[2][2]*b[2][3] + a[2][3]*b[3][3]
m30 := a[3][0]*b[0][0] + a[3][1]*b[1][0] + a[3][2]*b[2][0] + a[3][3]*b[3][0]
m31 := a[3][0]*b[0][1] + a[3][1]*b[1][1] + a[3][2]*b[2][1] + a[3][3]*b[3][1]
m32 := a[3][0]*b[0][2] + a[3][1]*b[1][2] + a[3][2]*b[2][2] + a[3][3]*b[3][2]
m33 := a[3][0]*b[0][3] + a[3][1]*b[1][3] + a[3][2]*b[2][3] + a[3][3]*b[3][3]
m[0][0] = m00
m[0][1] = m01
m[0][2] = m02
m[0][3] = m03
m[1][0] = m10
m[1][1] = m11
m[1][2] = m12
m[1][3] = m13
m[2][0] = m20
m[2][1] = m21
m[2][2] = m22
m[2][3] = m23
m[3][0] = m30
m[3][1] = m31
m[3][2] = m32
m[3][3] = m33
}
// Perspective sets m to be the GL perspective matrix.
func (m *Mat4) Perspective(fov Radian, aspect, near, far float32) {
t := Tan(float32(fov) / 2)
m[0][0] = 1 / (aspect * t)
m[1][1] = 1 / t
m[2][2] = -(far + near) / (far - near)
m[2][3] = -1
m[3][2] = -2 * far * near / (far - near)
}
// Scale sets m to be a scale followed by p.
// It is equivalent to
// m.Mul(p, &Mat4{
// {x, 0, 0, 0},
// {0, y, 0, 0},
// {0, 0, z, 0},
// {0, 0, 0, 1},
// }).
func (m *Mat4) Scale(p *Mat4, x, y, z float32) {
m[0][0] = p[0][0] * x
m[0][1] = p[0][1] * y
m[0][2] = p[0][2] * z
m[0][3] = p[0][3]
m[1][0] = p[1][0] * x
m[1][1] = p[1][1] * y
m[1][2] = p[1][2] * z
m[1][3] = p[1][3]
m[2][0] = p[2][0] * x
m[2][1] = p[2][1] * y
m[2][2] = p[2][2] * z
m[2][3] = p[2][3]
m[3][0] = p[3][0] * x
m[3][1] = p[3][1] * y
m[3][2] = p[3][2] * z
m[3][3] = p[3][3]
}
// Translate sets m to be a translation followed by p.
// It is equivalent to
// m.Mul(p, &Mat4{
// {1, 0, 0, x},
// {0, 1, 0, y},
// {0, 0, 1, z},
// {0, 0, 0, 1},
// }).
func (m *Mat4) Translate(p *Mat4, x, y, z float32) {
m[0][0] = p[0][0]
m[0][1] = p[0][1]
m[0][2] = p[0][2]
m[0][3] = p[0][0]*x + p[0][1]*y + p[0][2]*z + p[0][3]
m[1][0] = p[1][0]
m[1][1] = p[1][1]
m[1][2] = p[1][2]
m[1][3] = p[1][0]*x + p[1][1]*y + p[1][2]*z + p[1][3]
m[2][0] = p[2][0]
m[2][1] = p[2][1]
m[2][2] = p[2][2]
m[2][3] = p[2][0]*x + p[2][1]*y + p[2][2]*z + p[2][3]
m[3][0] = p[3][0]
m[3][1] = p[3][1]
m[3][2] = p[3][2]
m[3][3] = p[3][0]*x + p[3][1]*y + p[3][2]*z + p[3][3]
}
// Rotate sets m to a rotation in radians around a specified axis, followed by p.
// It is equivalent to m.Mul(p, affineRotation).
func (m *Mat4) Rotate(p *Mat4, angle Radian, axis *Vec3) {
a := *axis
a.Normalize()
c, s := Cos(float32(angle)), Sin(float32(angle))
d := 1 - c
m.Mul(p, &Mat4{{
c + d*a[0]*a[1],
0 + d*a[0]*a[1] + s*a[2],
0 + d*a[0]*a[1] - s*a[1],
0,
}, {
0 + d*a[1]*a[0] - s*a[2],
c + d*a[1]*a[1],
0 + d*a[1]*a[2] + s*a[0],
0,
}, {
0 + d*a[2]*a[0] + s*a[1],
0 + d*a[2]*a[1] - s*a[0],
c + d*a[2]*a[2],
0,
}, {
0, 0, 0, 1,
}})
}
func (m *Mat4) LookAt(eye, center, up *Vec3) {
f, s, u := new(Vec3), new(Vec3), new(Vec3)
*f = *center
f.Sub(f, eye)
f.Normalize()
s.Cross(f, up)
s.Normalize()
u.Cross(s, f)
*m = Mat4{
{s[0], u[0], -f[0], 0},
{s[1], u[1], -f[1], 0},
{s[2], u[2], -f[2], 0},
{-s.Dot(eye), -u.Dot(eye), +f.Dot(eye), 1},
}
}