// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package f32 import "fmt" // A Mat4 is a 4x4 matrix of float32 values. // Elements are indexed first by row then column, i.e. m[row][column]. type Mat4 [4]Vec4 func (m Mat4) String() string { return fmt.Sprintf(`Mat4[% 0.3f, % 0.3f, % 0.3f, % 0.3f, % 0.3f, % 0.3f, % 0.3f, % 0.3f, % 0.3f, % 0.3f, % 0.3f, % 0.3f, % 0.3f, % 0.3f, % 0.3f, % 0.3f]`, m[0][0], m[0][1], m[0][2], m[0][3], m[1][0], m[1][1], m[1][2], m[1][3], m[2][0], m[2][1], m[2][2], m[2][3], m[3][0], m[3][1], m[3][2], m[3][3]) } func (m *Mat4) Identity() { *m = Mat4{ {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, } } func (m *Mat4) Eq(n *Mat4, epsilon float32) bool { for i := range m { for j := range m[i] { diff := m[i][j] - n[i][j] if diff < -epsilon || +epsilon < diff { return false } } } return true } // Mul stores a × b in m. func (m *Mat4) Mul(a, b *Mat4) { // Store the result in local variables, in case m == a || m == b. m00 := a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0] + a[0][3]*b[3][0] m01 := a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1] + a[0][3]*b[3][1] m02 := a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2] + a[0][3]*b[3][2] m03 := a[0][0]*b[0][3] + a[0][1]*b[1][3] + a[0][2]*b[2][3] + a[0][3]*b[3][3] m10 := a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0] + a[1][3]*b[3][0] m11 := a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1] + a[1][3]*b[3][1] m12 := a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2] + a[1][3]*b[3][2] m13 := a[1][0]*b[0][3] + a[1][1]*b[1][3] + a[1][2]*b[2][3] + a[1][3]*b[3][3] m20 := a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0] + a[2][3]*b[3][0] m21 := a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1] + a[2][3]*b[3][1] m22 := a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2] + a[2][3]*b[3][2] m23 := a[2][0]*b[0][3] + a[2][1]*b[1][3] + a[2][2]*b[2][3] + a[2][3]*b[3][3] m30 := a[3][0]*b[0][0] + a[3][1]*b[1][0] + a[3][2]*b[2][0] + a[3][3]*b[3][0] m31 := a[3][0]*b[0][1] + a[3][1]*b[1][1] + a[3][2]*b[2][1] + a[3][3]*b[3][1] m32 := a[3][0]*b[0][2] + a[3][1]*b[1][2] + a[3][2]*b[2][2] + a[3][3]*b[3][2] m33 := a[3][0]*b[0][3] + a[3][1]*b[1][3] + a[3][2]*b[2][3] + a[3][3]*b[3][3] m[0][0] = m00 m[0][1] = m01 m[0][2] = m02 m[0][3] = m03 m[1][0] = m10 m[1][1] = m11 m[1][2] = m12 m[1][3] = m13 m[2][0] = m20 m[2][1] = m21 m[2][2] = m22 m[2][3] = m23 m[3][0] = m30 m[3][1] = m31 m[3][2] = m32 m[3][3] = m33 } // Perspective sets m to be the GL perspective matrix. func (m *Mat4) Perspective(fov Radian, aspect, near, far float32) { t := Tan(float32(fov) / 2) m[0][0] = 1 / (aspect * t) m[1][1] = 1 / t m[2][2] = -(far + near) / (far - near) m[2][3] = -1 m[3][2] = -2 * far * near / (far - near) } // Scale sets m to be a scale followed by p. // It is equivalent to // m.Mul(p, &Mat4{ // {x, 0, 0, 0}, // {0, y, 0, 0}, // {0, 0, z, 0}, // {0, 0, 0, 1}, // }). func (m *Mat4) Scale(p *Mat4, x, y, z float32) { m[0][0] = p[0][0] * x m[0][1] = p[0][1] * y m[0][2] = p[0][2] * z m[0][3] = p[0][3] m[1][0] = p[1][0] * x m[1][1] = p[1][1] * y m[1][2] = p[1][2] * z m[1][3] = p[1][3] m[2][0] = p[2][0] * x m[2][1] = p[2][1] * y m[2][2] = p[2][2] * z m[2][3] = p[2][3] m[3][0] = p[3][0] * x m[3][1] = p[3][1] * y m[3][2] = p[3][2] * z m[3][3] = p[3][3] } // Translate sets m to be a translation followed by p. // It is equivalent to // m.Mul(p, &Mat4{ // {1, 0, 0, x}, // {0, 1, 0, y}, // {0, 0, 1, z}, // {0, 0, 0, 1}, // }). func (m *Mat4) Translate(p *Mat4, x, y, z float32) { m[0][0] = p[0][0] m[0][1] = p[0][1] m[0][2] = p[0][2] m[0][3] = p[0][0]*x + p[0][1]*y + p[0][2]*z + p[0][3] m[1][0] = p[1][0] m[1][1] = p[1][1] m[1][2] = p[1][2] m[1][3] = p[1][0]*x + p[1][1]*y + p[1][2]*z + p[1][3] m[2][0] = p[2][0] m[2][1] = p[2][1] m[2][2] = p[2][2] m[2][3] = p[2][0]*x + p[2][1]*y + p[2][2]*z + p[2][3] m[3][0] = p[3][0] m[3][1] = p[3][1] m[3][2] = p[3][2] m[3][3] = p[3][0]*x + p[3][1]*y + p[3][2]*z + p[3][3] } // Rotate sets m to a rotation in radians around a specified axis, followed by p. // It is equivalent to m.Mul(p, affineRotation). func (m *Mat4) Rotate(p *Mat4, angle Radian, axis *Vec3) { a := *axis a.Normalize() c, s := Cos(float32(angle)), Sin(float32(angle)) d := 1 - c m.Mul(p, &Mat4{{ c + d*a[0]*a[1], 0 + d*a[0]*a[1] + s*a[2], 0 + d*a[0]*a[1] - s*a[1], 0, }, { 0 + d*a[1]*a[0] - s*a[2], c + d*a[1]*a[1], 0 + d*a[1]*a[2] + s*a[0], 0, }, { 0 + d*a[2]*a[0] + s*a[1], 0 + d*a[2]*a[1] - s*a[0], c + d*a[2]*a[2], 0, }, { 0, 0, 0, 1, }}) } func (m *Mat4) LookAt(eye, center, up *Vec3) { f, s, u := new(Vec3), new(Vec3), new(Vec3) *f = *center f.Sub(f, eye) f.Normalize() s.Cross(f, up) s.Normalize() u.Cross(s, f) *m = Mat4{ {s[0], u[0], -f[0], 0}, {s[1], u[1], -f[1], 0}, {s[2], u[2], -f[2], 0}, {-s.Dot(eye), -u.Dot(eye), +f.Dot(eye), 1}, } }