mobile/gl/glutil/glimage.go

275 lines
7.7 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build linux darwin
package glutil
import (
"encoding/binary"
"image"
"sync"
"golang.org/x/mobile/f32"
"golang.org/x/mobile/geom"
"golang.org/x/mobile/gl"
)
var glimage struct {
sync.Once
quadXY gl.Buffer
quadUV gl.Buffer
program gl.Program
pos gl.Attrib
mvp gl.Uniform
uvp gl.Uniform
inUV gl.Attrib
textureSample gl.Uniform
}
func glInit() {
var err error
glimage.program, err = CreateProgram(vertexShader, fragmentShader)
if err != nil {
panic(err)
}
glimage.quadXY = gl.CreateBuffer()
glimage.quadUV = gl.CreateBuffer()
gl.BindBuffer(gl.ARRAY_BUFFER, glimage.quadXY)
gl.BufferData(gl.ARRAY_BUFFER, quadXYCoords, gl.STATIC_DRAW)
gl.BindBuffer(gl.ARRAY_BUFFER, glimage.quadUV)
gl.BufferData(gl.ARRAY_BUFFER, quadUVCoords, gl.STATIC_DRAW)
glimage.pos = gl.GetAttribLocation(glimage.program, "pos")
glimage.mvp = gl.GetUniformLocation(glimage.program, "mvp")
glimage.uvp = gl.GetUniformLocation(glimage.program, "uvp")
glimage.inUV = gl.GetAttribLocation(glimage.program, "inUV")
glimage.textureSample = gl.GetUniformLocation(glimage.program, "textureSample")
}
// Image bridges between an *image.RGBA and an OpenGL texture.
//
// The contents of the embedded *image.RGBA can be uploaded as a
// texture and drawn as a 2D quad.
//
// The number of active Images must fit in the system's OpenGL texture
// limit. The typical use of an Image is as a texture atlas.
type Image struct {
*image.RGBA
Texture gl.Texture
texWidth int
texHeight int
}
// NewImage creates an Image of the given size.
//
// Both a host-memory *image.RGBA and a GL texture are created.
func NewImage(w, h int) *Image {
dx := roundToPower2(w)
dy := roundToPower2(h)
// TODO(crawshaw): Using VertexAttribPointer we can pass texture
// data with a stride, which would let us use the exact number of
// pixels on the host instead of the rounded up power 2 size.
m := image.NewRGBA(image.Rect(0, 0, dx, dy))
glimage.Do(glInit)
img := &Image{
RGBA: m.SubImage(image.Rect(0, 0, w, h)).(*image.RGBA),
Texture: gl.CreateTexture(),
texWidth: dx,
texHeight: dy,
}
// TODO(crawshaw): We don't have the context on a finalizer. Find a way.
// runtime.SetFinalizer(img, func(img *Image) { gl.DeleteTexture(img.Texture) })
gl.BindTexture(gl.TEXTURE_2D, img.Texture)
gl.TexImage2D(gl.TEXTURE_2D, 0, dx, dy, gl.RGBA, gl.UNSIGNED_BYTE, nil)
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR)
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR)
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE)
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE)
return img
}
func roundToPower2(x int) int {
x2 := 1
for x2 < x {
x2 *= 2
}
return x2
}
// Upload copies the host image data to the GL device.
func (img *Image) Upload() {
gl.BindTexture(gl.TEXTURE_2D, img.Texture)
gl.TexSubImage2D(gl.TEXTURE_2D, 0, 0, 0, img.texWidth, img.texHeight, gl.RGBA, gl.UNSIGNED_BYTE, img.Pix)
}
// Draw draws the srcBounds part of the image onto a parallelogram, defined by
// three of its corners, in the current GL framebuffer.
func (img *Image) Draw(topLeft, topRight, bottomLeft geom.Point, srcBounds image.Rectangle) {
// TODO(crawshaw): Adjust viewport for the top bar on android?
gl.UseProgram(glimage.program)
{
// We are drawing a parallelogram PQRS, defined by three of its
// corners, onto the entire GL framebuffer ABCD. The two quads may
// actually be equal, but in the general case, PQRS can be smaller,
// and PQRS is not necessarily axis-aligned.
//
// A +---------------+ B
// | P +-----+ Q |
// | | | |
// | S +-----+ R |
// D +---------------+ C
//
// There are two co-ordinate spaces: geom space and framebuffer space.
// In geom space, the ABCD rectangle is:
//
// (0, 0) (geom.Width, 0)
// (0, geom.Height) (geom.Width, geom.Height)
//
// and the PQRS quad is:
//
// (topLeft.X, topLeft.Y) (topRight.X, topRight.Y)
// (bottomLeft.X, bottomLeft.Y) (implicit, implicit)
//
// In framebuffer space, the ABCD rectangle is:
//
// (-1, +1) (+1, +1)
// (-1, -1) (+1, -1)
//
// First of all, convert from geom space to framebuffer space. For
// later convenience, we divide everything by 2 here: px2 is half of
// the P.X co-ordinate (in framebuffer space).
px2 := -0.5 + float32(topLeft.X/geom.Width)
py2 := +0.5 - float32(topLeft.Y/geom.Height)
qx2 := -0.5 + float32(topRight.X/geom.Width)
qy2 := +0.5 - float32(topRight.Y/geom.Height)
sx2 := -0.5 + float32(bottomLeft.X/geom.Width)
sy2 := +0.5 - float32(bottomLeft.Y/geom.Height)
// Next, solve for the affine transformation matrix
// [ a00 a01 a02 ]
// a = [ a10 a11 a12 ]
// [ 0 0 1 ]
// that maps A to P:
// a × [ -1 +1 1 ]' = [ 2*px2 2*py2 1 ]'
// and likewise maps B to Q and D to S. Solving those three constraints
// implies that C maps to R, since affine transformations keep parallel
// lines parallel. This gives 6 equations in 6 unknowns:
// -a00 + a01 + a02 = 2*px2
// -a10 + a11 + a12 = 2*py2
// +a00 + a01 + a02 = 2*qx2
// +a10 + a11 + a12 = 2*qy2
// -a00 - a01 + a02 = 2*sx2
// -a10 - a11 + a12 = 2*sy2
// which gives:
// a00 = (2*qx2 - 2*px2) / 2 = qx2 - px2
// and similarly for the other elements of a.
glimage.mvp.WriteAffine(&f32.Affine{{
qx2 - px2,
px2 - sx2,
qx2 + sx2,
}, {
qy2 - py2,
py2 - sy2,
qy2 + sy2,
}})
}
{
// Mapping texture co-ordinates is similar, except that in texture
// space, the ABCD rectangle is:
//
// (0,0) (1,0)
// (0,1) (1,1)
//
// and the PQRS quad is always axis-aligned. First of all, convert
// from pixel space to texture space.
w := float32(img.texWidth)
h := float32(img.texHeight)
px := float32(srcBounds.Min.X-img.Rect.Min.X) / w
py := float32(srcBounds.Min.Y-img.Rect.Min.Y) / h
qx := float32(srcBounds.Max.X-img.Rect.Min.X) / w
sy := float32(srcBounds.Max.Y-img.Rect.Min.Y) / h
// Due to axis alignment, qy = py and sx = px.
//
// The simultaneous equations are:
// 0 + 0 + a02 = px
// 0 + 0 + a12 = py
// a00 + 0 + a02 = qx
// a10 + 0 + a12 = qy = py
// 0 + a01 + a02 = sx = px
// 0 + a11 + a12 = sy
glimage.uvp.WriteAffine(&f32.Affine{{
qx - px,
0,
px,
}, {
0,
sy - py,
py,
}})
}
gl.ActiveTexture(gl.TEXTURE0)
gl.BindTexture(gl.TEXTURE_2D, img.Texture)
gl.Uniform1i(glimage.textureSample, 0)
gl.BindBuffer(gl.ARRAY_BUFFER, glimage.quadXY)
gl.EnableVertexAttribArray(glimage.pos)
gl.VertexAttribPointer(glimage.pos, 2, gl.FLOAT, false, 0, 0)
gl.BindBuffer(gl.ARRAY_BUFFER, glimage.quadUV)
gl.EnableVertexAttribArray(glimage.inUV)
gl.VertexAttribPointer(glimage.inUV, 2, gl.FLOAT, false, 0, 0)
gl.DrawArrays(gl.TRIANGLE_STRIP, 0, 4)
gl.DisableVertexAttribArray(glimage.pos)
gl.DisableVertexAttribArray(glimage.inUV)
}
var quadXYCoords = f32.Bytes(binary.LittleEndian,
-1, +1, // top left
+1, +1, // top right
-1, -1, // bottom left
+1, -1, // bottom right
)
var quadUVCoords = f32.Bytes(binary.LittleEndian,
0, 0, // top left
1, 0, // top right
0, 1, // bottom left
1, 1, // bottom right
)
const vertexShader = `#version 100
uniform mat3 mvp;
uniform mat3 uvp;
attribute vec3 pos;
attribute vec2 inUV;
varying vec2 UV;
void main() {
vec3 p = pos;
p.z = 1.0;
gl_Position = vec4(mvp * p, 1);
UV = (uvp * vec3(inUV, 1)).xy;
}
`
const fragmentShader = `#version 100
precision mediump float;
varying vec2 UV;
uniform sampler2D textureSample;
void main(){
gl_FragColor = texture2D(textureSample, UV);
}
`