Danny Ryan f4967bc47e
Merge pull request #2835 from mkalinin/random-to-prevrandao
Bellatrix: random -> prev_randao
2022-02-22 11:47:24 -07:00
2021-12-23 14:25:43 +08:00
2021-12-23 17:26:48 +08:00
2022-02-22 17:16:33 +06:00
2021-05-28 18:13:22 -07:00
2022-02-06 13:32:21 -08:00
2022-02-22 17:16:33 +06:00
2021-12-23 14:25:43 +08:00
2019-03-12 11:59:08 +00:00
2020-06-18 14:36:14 +08:00
2022-01-13 11:27:11 -08:00
2022-01-11 20:34:06 -08:00
2021-08-30 16:29:41 -06:00

Ethereum Proof-of-Stake Consensus Specifications

Join the chat at https://discord.gg/qGpsxSA Join the chat at https://gitter.im/ethereum/sharding

To learn more about proof-of-stake and sharding, see the PoS FAQ, sharding FAQ and the research compendium.

This repository hosts the current Ethereum proof-of-stake specifications. Discussions about design rationale and proposed changes can be brought up and discussed as issues. Solidified, agreed-upon changes to the spec can be made through pull requests.

Specs

GitHub release PyPI version

Core specifications for Ethereum proof-of-stake clients can be found in specs. These are divided into features. Features are researched and developed in parallel, and then consolidated into sequential upgrades when ready.

The current features are:

Phase 0

Altair

Bellatrix (also known as The Merge)

The Bellatrix protocol upgrade is still actively in development. The exact specification has not been formally accepted as final and details are still subject to change.

Sharding

Sharding follows Bellatrix, and is divided into three parts:

Accompanying documents can be found in specs and include:

Additional specifications for client implementers

Additional specifications and standards outside of requisite client functionality can be found in the following repos:

Design goals

The following are the broad design goals for the Ethereum proof-of-stake consensus specifications:

  • to minimize complexity, even at the cost of some losses in efficiency
  • to remain live through major network partitions and when very large portions of nodes go offline
  • to select all components such that they are either quantum secure or can be easily swapped out for quantum secure counterparts when available
  • to utilize crypto and design techniques that allow for a large participation of validators in total and per unit time
  • to allow for a typical consumer laptop with O(C) resources to process/validate O(1) shards (including any system level validation such as the beacon chain)

Useful external resources

For spec contributors

Documentation on the different components used during spec writing can be found here:

Consensus spec tests

Conformance tests built from the executable python spec are available in the Ethereum Proof-of-Stake Consensus Spec Tests repo. Compressed tarballs are available in releases.

Description
Ethereum 2.0 Specifications
Readme CC0-1.0
Languages
Python 98%
Makefile 2%