Ethereum 2.0 Specifications
Go to file
dankrad ef24b97190
Merge pull request #1073 from NIC619/fix_ssz_union_example
Fix SSZ union type example
2019-05-11 11:40:53 +02:00
.circleci Revert "Only use `setup.py`" 2019-04-24 11:59:13 -06:00
configs Merge branch 'dev' into JustinDrake-patch-21 2019-05-06 17:48:09 +01:00
scripts/phase0 Address Danny's comment 2019-05-07 15:01:23 +01:00
specs Fix SSZ union type example 2019-05-11 15:12:11 +08:00
test_generators Update instances of int_to_bytes 2019-05-07 10:57:41 +01:00
test_libs Merge branch 'dev' into JustinDrake-patch-10 2019-05-08 08:42:47 -06:00
.gitignore Revert "Only use `setup.py`" 2019-04-24 11:59:13 -06:00
LICENSE CC0 1.0 Universal for repo 2019-03-12 11:59:08 +00:00
Makefile Revert "Only use `setup.py`" 2019-04-24 11:59:13 -06:00
README.md Doc standardization (#1039) 2019-05-06 16:30:32 +01:00

README.md

Ethereum 2.0 Specifications

Join the chat at https://gitter.im/ethereum/sharding

To learn more about sharding and Ethereum 2.0 (Serenity), see the sharding FAQ and the research compendium.

This repository hosts the current Eth 2.0 specifications. Discussions about design rationale and proposed changes can be brought up and discussed as issues. Solidified, agreed-upon changes to the spec can be made through pull requests.

Specs

Core specifications for Eth 2.0 client validation can be found in specs/core. These are divided into phases. Each subsequent phase depends upon the prior. The current phases specified are:

Phase 0

Phase 1

Accompanying documents can be found in specs and include:

Design goals

The following are the broad design goals for Ethereum 2.0:

  • to minimize complexity, even at the cost of some losses in efficiency
  • to remain live through major network partitions and when very large portions of nodes go offline
  • to select all components such that they are either quantum secure or can be easily swapped out for quantum secure counterparts when available
  • to utilize crypto and design techniques that allow for a large participation of validators in total and per unit time
  • to allow for a typical consumer laptop with O(C) resources to process/validate O(1) shards (including any system level validation such as the beacon chain)

For spec contributors

Documentation on the different components used during spec writing can be found here: