2019-06-29 02:16:49 +08:00

70 lines
2.0 KiB
Python

from .hash_function import hash
from math import log2
ZERO_BYTES32 = b'\x00' * 32
zerohashes = [ZERO_BYTES32]
for layer in range(1, 100):
zerohashes.append(hash(zerohashes[layer - 1] + zerohashes[layer - 1]))
def calc_merkle_tree_from_leaves(values, layer_count=32):
values = list(values)
tree = [values[::]]
for h in range(layer_count):
if len(values) % 2 == 1:
values.append(zerohashes[h])
values = [hash(values[i] + values[i + 1]) for i in range(0, len(values), 2)]
tree.append(values[::])
return tree
def get_merkle_root(values, pad_to=1):
layer_count = int(log2(pad_to))
if len(values) == 0:
return zerohashes[layer_count]
return calc_merkle_tree_from_leaves(values, layer_count)[-1][0]
def get_merkle_proof(tree, item_index):
proof = []
for i in range(32):
subindex = (item_index // 2**i) ^ 1
proof.append(tree[i][subindex] if subindex < len(tree[i]) else zerohashes[i])
return proof
def merkleize_chunks(chunks, pad_to: int=1):
count = len(chunks)
depth = max(count - 1, 0).bit_length()
max_depth = max(depth, (pad_to - 1).bit_length())
tmp = [None for _ in range(max_depth + 1)]
def merge(h, i):
j = 0
while True:
if i & (1 << j) == 0:
if i == count and j < depth:
h = hash(h + zerohashes[j]) # keep going if we are complementing the void to the next power of 2
else:
break
else:
h = hash(tmp[j] + h)
j += 1
tmp[j] = h
# merge in leaf by leaf.
for i in range(count):
merge(chunks[i], i)
# complement with 0 if empty, or if not the right power of 2
if 1 << depth != count:
merge(zerohashes[0], count)
# the next power of two may be smaller than the ultimate virtual size, complement with zero-hashes at each depth.
for j in range(depth, max_depth):
tmp[j + 1] = hash(tmp[j] + zerohashes[j])
return tmp[max_depth]