eth2.0-specs/deposit_contract.sol

121 lines
4.3 KiB
Solidity

pragma solidity ^0.6.0;
// This interface is designed to be compatible with the Vyper version.
interface IDepositContract {
event DepositEvent(
bytes pubkey,
bytes withdrawal_credentials,
bytes amount,
bytes signature,
bytes index
);
function deposit(
bytes calldata pubkey,
bytes calldata withdrawal_credentials,
bytes calldata signature,
bytes32 deposit_data_root
) external payable;
}
/*
* This is a rewrite of the Vyper Eth2.0 deposit contract in Solidity.
* It tries to stay as close as possible to the original source code and
* hence it may look a bit unintuitive to a reader well versed in Solidity.
*/
contract DepositContract is IDepositContract {
uint constant GWEI = 1e9;
uint constant MIN_DEPOSIT_AMOUNT = 1000000000; // Gwei
uint constant DEPOSIT_CONTRACT_TREE_DEPTH = 32;
uint constant MAX_DEPOSIT_COUNT = 4294967295; // 2**DEPOSIT_CONTRACT_TREE_DEPTH - 1
uint constant PUBKEY_LENGTH = 48; // bytes
uint constant WITHDRAWAL_CREDENTIALS_LENGTH = 32; // bytes
uint constant SIGNATURE_LENGTH = 96; // bytes
uint constant AMOUNT_LENGTH = 8; // bytes
bytes32[DEPOSIT_CONTRACT_TREE_DEPTH] branch;
uint256 deposit_count;
// TODO: add constructor
// TODO: add get_deposit_root
// TODO: add get_deposit_count
function deposit(
bytes calldata pubkey,
bytes calldata withdrawal_credentials,
bytes calldata signature,
bytes32 deposit_data_root
) override external payable {
// Avoid overflowing the Merkle tree (and prevent edge case in computing `self.branch`)
require(deposit_count < MAX_DEPOSIT_COUNT);
// Check deposit amount
uint deposit_amount = msg.value / GWEI;
require(deposit_amount >= MIN_DEPOSIT_AMOUNT);
// Length checks for safety
require(pubkey.length == PUBKEY_LENGTH);
require(withdrawal_credentials.length == WITHDRAWAL_CREDENTIALS_LENGTH);
require(signature.length == SIGNATURE_LENGTH);
// FIXME: these are not the Vyper code, but should verify they are not needed
// assert(deposit_amount <= 2^64-1);
// assert(deposit_count <= 2^64-1);
// Emit `DepositEvent` log
bytes memory amount = to_little_endian_64(uint64(deposit_amount));
emit DepositEvent(
pubkey,
withdrawal_credentials,
amount,
signature,
to_little_endian_64(uint64(deposit_count))
);
// Compute deposit data root (`DepositData` hash tree root)
// These are helpers and are implicitly initialised to zero.
bytes16 zero_bytes16;
bytes24 zero_bytes24;
bytes32 zero_bytes32;
bytes32 pubkey_root = sha256(abi.encodePacked(pubkey, zero_bytes16));
bytes32 signature_root = sha256(abi.encodePacked(
sha256(abi.encodePacked(bytes(signature[:64]))),
sha256(abi.encodePacked(bytes(signature[64:]), zero_bytes32))
));
bytes32 node = sha256(abi.encodePacked(
sha256(abi.encodePacked(pubkey_root, withdrawal_credentials)),
sha256(abi.encodePacked(amount, zero_bytes24, signature_root))
));
// Verify computed and expected deposit data roots match
require(node == deposit_data_root);
// Add deposit data root to Merkle tree (update a single `branch` node)
deposit_count += 1;
uint size = deposit_count;
for (uint height = 0; height < DEPOSIT_CONTRACT_TREE_DEPTH; height++) {
if ((size & 1) == 1) {
branch[height] = node;
break;
}
node = sha256(abi.encodePacked(branch[height], node));
size /= 2;
}
}
function to_little_endian_64(uint64 value) internal pure returns (bytes memory ret) {
// Unrolled the loop here.
ret = new bytes(8);
ret[0] = bytes1(uint8(value & 0xff));
ret[1] = bytes1(uint8((value >> 8) & 0xff));
ret[2] = bytes1(uint8((value >> 16) & 0xff));
ret[3] = bytes1(uint8((value >> 24) & 0xff));
ret[4] = bytes1(uint8((value >> 32) & 0xff));
ret[5] = bytes1(uint8((value >> 40) & 0xff));
ret[6] = bytes1(uint8((value >> 48) & 0xff));
ret[7] = bytes1(uint8((value >> 56) & 0xff));
}
}