mirror of
https://github.com/status-im/eth2.0-specs.git
synced 2025-01-26 10:29:07 +00:00
simplify merkle tree chunking
* pack small items tightly to fit more items in single chunk, decreasing the number of hash operations needed * remove chunk padding - hash algorithm will pad to its own block size anyway * express data length in number of items instead of binary bytes at leaf level (equivalent)
This commit is contained in:
parent
ac207e4cc8
commit
ea7ad28298
@ -402,40 +402,32 @@ Return the hash of the serialization of the value.
|
||||
First, we define some helpers and then the Merkle tree function. The constant `CHUNK_SIZE` is set to 128.
|
||||
|
||||
```python
|
||||
# Returns the smallest power of 2 equal to or higher than x
|
||||
def next_power_of_2(x):
|
||||
return x if x == 1 else next_power_of_2((x+1) // 2) * 2
|
||||
|
||||
# Extends data length to a power of 2 by minimally right-zero-padding
|
||||
def extend_to_power_of_2(data):
|
||||
return data + b'\x00' * (next_power_of_2(len(data)) - len(data))
|
||||
|
||||
# Concatenate a list of homogeneous objects into data and pad it
|
||||
def list_to_glob(lst):
|
||||
if len(lst) == 0:
|
||||
return b''
|
||||
if len(lst[0]) != next_power_of_2(len(lst[0])):
|
||||
lst = [extend_to_power_of_2(x) for x in lst]
|
||||
data = b''.join(lst)
|
||||
# Pad to chunksize
|
||||
data += b'\x00' * (CHUNKSIZE - (len(data) % CHUNKSIZE or CHUNKSIZE))
|
||||
return data
|
||||
|
||||
# Merkle tree hash of a list of items
|
||||
# Merkle tree hash of a list of homogenous, non-empty items
|
||||
def merkle_hash(lst):
|
||||
# Turn list into padded data
|
||||
data = list_to_glob(lst)
|
||||
# Store length of list (to compensate for non-bijectiveness of padding)
|
||||
datalen = len(lst).to_bytes(32, 'big')
|
||||
# Convert to chunks
|
||||
chunkz = [data[i:i+CHUNKSIZE] for i in range(0, len(data), CHUNKSIZE)]
|
||||
|
||||
if len(lst) == 0:
|
||||
# Handle empty list case
|
||||
chunkz = [b'\x00' * CHUNKSIZE]
|
||||
elif len(lst[0]) < CHUNKSIZE:
|
||||
# See how many items fit in a chunk
|
||||
items_per_chunk = CHUNKSIZE // len(lst[0])
|
||||
|
||||
# Build a list of chunks based on the number of items in the chunk
|
||||
chunkz = [b''.join(lst[i:i+items_per_chunk]) for i in range(0, len(lst), items_per_chunk)]
|
||||
else:
|
||||
# Leave large items alone
|
||||
chunkz = lst
|
||||
|
||||
# Tree-hash
|
||||
while len(chunkz) > 1:
|
||||
if len(chunkz) % 2 == 1:
|
||||
chunkz.append(b'\x00' * CHUNKSIZE)
|
||||
chunkz = [hash(chunkz[i] + chunkz[i+1]) for i in range(0, len(chunkz), 2)]
|
||||
|
||||
# Return hash of root and length data
|
||||
return hash((chunkz[0] if len(chunks) > 0 else b'\x00' * 32) + datalen)
|
||||
return hash((chunkz[0] + datalen)
|
||||
```
|
||||
|
||||
To `tree_hash` a list, we simply do:
|
||||
|
Loading…
x
Reference in New Issue
Block a user