This commit is contained in:
Justin 2019-08-28 22:57:24 +01:00 committed by GitHub
parent 334d6c6bc7
commit d7e628e08f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -19,43 +19,43 @@
- [Signature domain types](#signature-domain-types)
- [Containers](#containers)
- [`ShardBlockSignatures`](#shardblocksignatures)
- [`ShardBlockData`](#shardblockdata)
- [`ShardBlock`](#shardblock)
- [`ShardBlockHeaderData`](#shardblockheaderdata)
- [`ShardBlockHeader`](#shardblockheader)
- [`ShardState`](#shardstate)
- [`ShardReceiptDelta`](#shardreceiptdelta)
- [`ShardReceipt`](#shardreceipt)
- [`ShardCheckpoint`](#shardcheckpoint)
- [Helper functions](#helper-functions)
- [Misc](#misc-1)
- [`pad`](#pad)
- [`compute_slot_of_shard_slot`](#compute_slot_of_shard_slot)
- [`compute_padded_data`](#compute_padded_data)
- [`compute_epoch_of_shard_slot`](#compute_epoch_of_shard_slot)
- [`compute_period_start_epoch`](#compute_period_start_epoch)
- [`compute_shard_period_start_epoch`](#compute_shard_period_start_epoch)
- [`compute_flat_shard_header`](#compute_flat_shard_header)
- [`compute_crosslink_data_root`](#compute_crosslink_data_root)
- [State accessors](#state-accessors)
- [Beacon state accessors](#beacon-state-accessors)
- [`get_period_committee`](#get_period_committee)
- [`get_persistent_committee`](#get_persistent_committee)
- [`get_shard_committee`](#get_shard_committee)
- [`get_shard_proposer_index`](#get_shard_proposer_index)
- [`get_default_shard_state`](#get_default_shard_state)
- [`get_shard_base_reward`](#get_shard_base_reward)
- [State mutators](#state-mutators)
- [`add_fee`](#add_fee)
- [Shard state mutators](#shard-state-mutators)
- [`add_reward`](#add_reward)
- [`add_fee`](#add_fee)
- [Genesis](#genesis)
- [`get_genesis_shard_state`](#get_genesis_shard_state)
- [`get_genesis_shard_block`](#get_genesis_shard_block)
- [Shard state transition function](#shard-state-transition-function)
- [Period processing](#period-processing)
- [Block processing](#block-processing)
- [Block header](#block-header)
- [Attestations](#attestations)
- [Block data fees](#block-data-fees)
- [Object validity](#object-validity)
- [Shard block validation: preliminary](#shard-block-validation-preliminary)
- [Beacon attestations](#beacon-attestations)
- [Block size fee](#block-size-fee)
- [Shard fork choice rule](#shard-fork-choice-rule)
<!-- /TOC -->
## Introduction
This document describes the shard data layer and the shard fork choice rule in Phase 1 of Ethereum 2.0.
This document describes the shard transition function (data layer only) and the shard fork choice rule as part of Phase 1 of Ethereum 2.0.
## Custom types
@ -69,8 +69,8 @@ This document describes the shard data layer and the shard fork choice rule in P
| Name | Value |
| - | - |
| `SHARD_SLOTS_PER_EPOCH` | `2**7` (= 128) |
| `TARGET_PERSISTENT_COMMITTEE_SIZE` | `2**7` (= 128) |
| `MIN_BLOCK_SIZE_PRICE` | `2**0` (= 1) |
| `MAX_PERIOD_COMMITTEE_SIZE` | `2**7` (= 128) |
| `SHARD_HEADER_SIZE` | `2**9` (= 512) |
| `SHARD_BLOCK_SIZE_TARGET` | `2**14` (= 16,384) |
| `SHARD_BLOCK_SIZE_LIMIT` | `2**16` (= 65,536) |
@ -79,13 +79,13 @@ This document describes the shard data layer and the shard fork choice rule in P
| Name | Value |
| - | - |
| `PHASE_1_FORK_EPOCH` | **TBD** |
| `SHARD_GENESIS_EPOCH` | **TBD** |
### Time parameters
| Name | Value | Unit | Duration |
| - | - | :-: | :-: |
| `CROSSLINK_LOOKBACK` | `2**0` (= 1) | epochs | 6.4 minutes |
| `SHARD_SLOTS_PER_EPOCH` | `2**7` (= 128) | shard slots | 6.4 minutes |
| `EPOCHS_PER_SHARD_PERIOD` | `2**8` (= 256) | epochs | ~27 hours |
### State list lengths
@ -98,8 +98,7 @@ This document describes the shard data layer and the shard fork choice rule in P
| Name | Value |
| - | - |
| `BASEFEE_ADJUSTMENT_FACTOR` | `2**3` (= 8) |
| `REWARD_COEFFICIENT_BASE` | `2**20` (= 1,048,576) |
| `BLOCK_SIZE_PRICE_QUOTIENT` | `2**3` (= 8) |
### Signature domain types
@ -118,33 +117,45 @@ class ShardBlockSignatures(Container):
proposer: BLSSignature
```
### `ShardBlockData`
```python
class ShardBlockData(Container):
slot: ShardSlot
beacon_block_root: Hash
parent_root: Hash
state_root: Hash
aggregation_bits: Bitvector[2 * MAX_PERIOD_COMMITTEE_SIZE]
block_size_sum: uint64
body: List[byte, SHARD_BLOCK_SIZE_LIMIT - SHARD_HEADER_SIZE]
```
### `ShardBlock`
```python
class ShardBlock(Container):
data: ShardBlockData
signatures: ShardBlockSignatures
```
### `ShardBlockHeaderData`
```python
class ShardBlockHeaderData(Container):
slot: ShardSlot
beacon_chain_root: Hash
beacon_block_root: Hash
parent_root: Hash
state_root: Hash
aggregation_bits: Bitvector[TARGET_PERSISTENT_COMMITTEE_SIZE * 2]
total_bytes: uint64
body: Bytes[SHARD_BLOCK_SIZE_LIMIT - SHARD_HEADER_SIZE]
padding: Bytes[32]
signatures: ShardBlockSignatures
aggregation_bits: Bitvector[2 * MAX_PERIOD_COMMITTEE_SIZE]
block_size_sum: uint64
body_root: Hash
```
### `ShardBlockHeader`
```python
class ShardBlockHeader(Container):
slot: ShardSlot
beacon_chain_root: Hash
parent_root: Hash
state_root: Hash
aggregation_bits: Bitvector[TARGET_PERSISTENT_COMMITTEE_SIZE * 2]
total_bytes: uint64
body_root: Hash
padding: Bytes[32]
data: ShardBlockHeaderData
signatures: ShardBlockSignatures
```
@ -152,51 +163,60 @@ class ShardBlockHeader(Container):
```python
class ShardState(Container):
history_accumulator: Vector[Hash, HISTORY_ACCUMULATOR_VECTOR]
earlier_committee_rewards: List[uint64, TARGET_PERSISTENT_COMMITTEE_SIZE]
later_committee_rewards: List[uint64, TARGET_PERSISTENT_COMMITTEE_SIZE]
earlier_committee_fees: List[Gwei, TARGET_PERSISTENT_COMMITTEE_SIZE]
later_committee_fees: List[Gwei, TARGET_PERSISTENT_COMMITTEE_SIZE]
basefee: Gwei
slot: ShardSlot
shard: Shard
latest_block_header: ShardBlockHeader
slot: ShardSlot
history_accumulator: Vector[Hash, HISTORY_ACCUMULATOR_VECTOR]
latest_block_header_data: ShardBlockHeader
receipt_root: Hash
total_bytes: uint64
block_size_sum: uint64
# Rewards and fees
block_size_price: Gwei
older_committee_rewards: List[Gwei, MAX_PERIOD_COMMITTEE_SIZE]
newer_committee_rewards: List[Gwei, MAX_PERIOD_COMMITTEE_SIZE]
older_committee_fees: List[Gwei, MAX_PERIOD_COMMITTEE_SIZE]
newer_committee_fees: List[Gwei, MAX_PERIOD_COMMITTEE_SIZE]
```
### `ShardReceiptDelta`
### `ShardReceipt`
```python
class ShardReceiptDelta(Container):
class ShardReceipt(Container):
index: ValidatorIndex
reward_coefficient: uint64
block_fee: Gwei
rewards: Gwei
fees: Gwei
```
### `ShardCheckpoint`
```python
class ShardCheckpoint(Container):
slot: ShardSlot
parent_root: Hash
```
## Helper functions
### Misc
#### `pad`
#### `compute_padded_data`
```python
def pad(x: bytes, length: uint64) -> bytes:
assert len(x) <= length
return x + b'\x00' * (length - len(x))
def compute_padded_data(data: bytes, length: uint64) -> bytes:
assert len(data) <= length
return data + b'\x00' * (length - len(data))
```
#### `compute_epoch_of_shard_slot`
```python
def compute_epoch_of_shard_slot(slot: ShardSlot) -> Epoch:
return compute_epoch_of_slot(compute_slot_of_shard_slot(slot))
return compute_epoch_of_slot(slot // SHARD_SLOTS_PER_EPOCH)
```
#### `compute_period_start_epoch`
#### `compute_shard_period_start_epoch`
```python
def compute_period_start_epoch(epoch: Epoch, lookback: Epoch=0) -> Epoch:
def compute_shard_period_start_epoch(epoch: Epoch, lookback: uint64) -> Epoch:
return Epoch(epoch - (epoch % EPOCHS_PER_SHARD_PERIOD) - lookback * EPOCHS_PER_SHARD_PERIOD)
```
@ -205,19 +225,22 @@ def compute_period_start_epoch(epoch: Epoch, lookback: Epoch=0) -> Epoch:
```python
def compute_flat_shard_header(block: ShardBlock) -> Bytes[SHARD_HEADER_SIZE]:
"""
Return a flat serialisation of the ``block`` header which preserves hash tree root.
Return a flat serialisation of the ``block`` header, preserving hash tree root.
"""
data = block.data
return (
pad(int_to_bytes(block.slot, length=8), 32) +
block.beacon_chain_root +
block.parent_root +
hash_tree_root(block.body) +
block.state_root +
pad(int_to_bytes(block.total_bytes, length=8), 32) +
bytes([sum([block.aggregation_bits[i + j] << j for j in range(8)]) for i in range(0, 256, 8)]) +
block.padding +
pad(block.signatures.attesters, 128) +
pad(block.signatures.proposer, 128)
# Left half of the hash tree
compute_padded_data(int_to_bytes(data.slot, length=8), 32) +
data.beacon_block_root +
data.parent_root +
hash_tree_root(data.body) +
data.state_root +
compute_padded_data(int_to_bytes(data.block_size_sum, length=8), 32) +
bytes([sum([data.aggregation_bits[i + j] << j for j in range(8)]) for i in range(0, 256, 8)]) +
Bytes32() + # Padding
# Right half of the hash tree
compute_padded_data(block.signatures.attesters, 128) +
compute_padded_data(block.signatures.proposer, 128)
)
```
@ -226,40 +249,32 @@ def compute_flat_shard_header(block: ShardBlock) -> Bytes[SHARD_HEADER_SIZE]:
```python
def compute_crosslink_data_root(blocks: Sequence[ShardBlock]) -> Hash:
headers = b''.join([compute_flat_shard_header(block) for block in blocks])
bodies = b''.join([block.body for block in blocks])
MAX_SIZE = SHARD_BLOCK_SIZE_LIMIT * SHARD_SLOTS_PER_EPOCH * MAX_EPOCHS_PER_CROSSLINK
return hash_tree_root(BytesN[MAX_SIZE](pad(headers + bodies, MAX_SIZE)))
bodies = b''.join([block.data.body for block in blocks])
MAX_SIZE = MAX_EPOCHS_PER_CROSSLINK * SHARD_SLOTS_PER_EPOCH * SHARD_BLOCK_SIZE_LIMIT
return hash_tree_root(BytesN[MAX_SIZE](compute_padded_data(headers + bodies, MAX_SIZE)))
```
### State accessors
### Beacon state accessors
#### `get_period_committee`
```python
def get_period_committee(state: BeaconState, epoch: Epoch, shard: Shard) -> Sequence[ValidatorIndex]:
full_committee = compute_committee(
indices=get_active_validator_indices(state, epoch),
seed=get_seed(state, epoch),
index=shard,
count=SHARD_COUNT,
)
return full_committee[:TARGET_PERSISTENT_COMMITTEE_SIZE]
def get_period_committee(state: BeaconState, shard: Shard, epoch: Epoch) -> Sequence[ValidatorIndex]:
active_validator_indices = get_active_validator_indices(state, epoch)
seed = get_seed(state, epoch)
return compute_committee(active_validator_indices, seed, shard, SHARD_COUNT)[:MAX_PERIOD_COMMITTEE_SIZE]
```
#### `get_persistent_committee`
#### `get_shard_committee`
```python
def get_persistent_committee(state: BeaconState, shard: Shard, epoch: Epoch) -> Sequence[ValidatorIndex]:
earlier_committee = get_period_committee(state, compute_period_start_epoch(epoch, lookback=2), shard)
later_committee = get_period_committee(state, compute_period_start_epoch(epoch, lookback=1), shard)
# Take not-yet-cycled-out validators from earlier committee and already-cycled-in validators from
# later committee; return a sorted list of the union of the two, deduplicated
return sorted(set(
[i for i in earlier_committee if epoch % EPOCHS_PER_SHARD_PERIOD < i % EPOCHS_PER_SHARD_PERIOD]
+ [i for i in later_committee if epoch % EPOCHS_PER_SHARD_PERIOD >= i % EPOCHS_PER_SHARD_PERIOD]
))
def get_shard_committee(state: BeaconState, shard: Shard, epoch: Epoch) -> Sequence[ValidatorIndex]:
older_committee = get_period_committee(state, shard, compute_shard_period_start_epoch(epoch, 2))
newer_committee = get_period_committee(state, shard, compute_shard_period_start_epoch(epoch, 1))
# Every epoch cycle out validators from the older committee and cycle in validators from the newer committee
older_subcommittee = [i for i in older_committee if i % EPOCHS_PER_SHARD_PERIOD > epoch % EPOCHS_PER_SHARD_PERIOD]
newer_subcommittee = [i for i in newer_committee if i % EPOCHS_PER_SHARD_PERIOD <= epoch % EPOCHS_PER_SHARD_PERIOD]
return older_subcommittee + newer_subcommittee
```
#### `get_shard_proposer_index`
@ -267,294 +282,219 @@ def get_persistent_committee(state: BeaconState, shard: Shard, epoch: Epoch) ->
```python
def get_shard_proposer_index(state: BeaconState, shard: Shard, slot: ShardSlot) -> ValidatorIndex:
epoch = get_current_epoch(state)
persistent_committee = list(get_persistent_committee(state, shard, epoch))
active_indices = [i for i in persistent_committee if is_active_validator(state.validators[i], epoch)]
assert len(active_indices) > 0
MAX_RANDOM_BYTE = 2**8 - 1
seed = hash(get_seed(state, epoch) + int_to_bytes(shard, length=8) + int_to_bytes(slot, length=8))
i = 0
while True:
candidate_index = active_indices[(slot + i) % len(active_indices)]
random_byte = hash(seed + int_to_bytes(i // 32, length=8))[i % 32]
effective_balance = state.validators[candidate_index].effective_balance
if effective_balance * MAX_RANDOM_BYTE >= MAX_EFFECTIVE_BALANCE * random_byte:
return ValidatorIndex(candidate_index)
i += 1
active_indices = [i for i in get_shard_committee(state, shard, epoch) if is_active_validator(state.validators[i], epoch)]
seed = hash(get_seed(state, epoch) + int_to_bytes(slot, length=8) + int_to_bytes(shard, length=8))
compute_proposer_index(state, active_indices, seed)
```
#### `get_default_shard_state`
```python
def get_default_shard_state(beacon_state: BeaconState, shard: Shard) -> ShardState:
earlier_committee = get_period_committee(
beacon_state,
Epoch(PHASE_1_FORK_EPOCH - EPOCHS_PER_SHARD_PERIOD * 2),
shard,
)
later_committee = get_period_committee(
beacon_state,
Epoch(PHASE_1_FORK_EPOCH - EPOCHS_PER_SHARD_PERIOD),
shard,
)
return ShardState(
basefee=1,
shard=shard,
slot=ShardSlot(PHASE_1_FORK_EPOCH * SHARD_SLOTS_PER_EPOCH),
earlier_committee_rewards=[REWARD_COEFFICIENT_BASE for _ in range(len(earlier_committee))],
later_committee_rewards=[REWARD_COEFFICIENT_BASE for _ in range(len(later_committee))],
earlier_committee_fees=[Gwei(0) for _ in range(len(earlier_committee))],
later_committee_fees=[Gwei(0) for _ in range(len(later_committee))],
)
```
#### `get_shard_base_reward`
```python
def get_shard_base_reward(beacon_state: BeaconState) -> Gwei:
total_balance_root = integer_squareroot(get_total_active_balance(beacon_state))
return Gwei(REWARD_COEFFICIENT_BASE * BASE_REWARD_FACTOR // total_balance_root // BASE_REWARDS_PER_EPOCH)
```
### State mutators
### Shard state mutators
#### `add_reward`
```python
def add_reward(state: ShardState, beacon_state: BeaconState, index: ValidatorIndex, delta: Gwei) -> None:
def add_reward(state: BeaconState, shard_state: ShardState, index: ValidatorIndex, delta: Gwei) -> None:
epoch = compute_epoch_of_shard_slot(state.slot)
earlier_committee = get_period_committee(beacon_state, compute_period_start_epoch(epoch, lookback=2), state.shard)
later_committee = get_period_committee(beacon_state, compute_period_start_epoch(epoch, lookback=1), state.shard)
if index in earlier_committee:
state.earlier_committee_rewards[earlier_committee.index(index)] += delta
elif index in later_committee:
state.later_committee_rewards[later_committee.index(index)] += delta
older_committee = get_period_committee(state, shard_state.shard, compute_shard_period_start_epoch(epoch, 2))
newer_committee = get_period_committee(state, shard_state.shard, compute_shard_period_start_epoch(epoch, 1))
if index in older_committee:
shard_state.older_committee_rewards[older_committee.index(index)] += delta
elif index in newer_committee:
shard_state.newer_committee_rewards[newer_committee.index(index)] += delta
```
#### `add_fee`
```python
def add_fee(state: ShardState, beacon_state: BeaconState, index: ValidatorIndex, delta: Gwei) -> None:
def add_fee(state: BeaconState, shard_state: ShardState, index: ValidatorIndex, delta: Gwei) -> None:
epoch = compute_epoch_of_shard_slot(state.slot)
earlier_committee = get_period_committee(beacon_state, compute_period_start_epoch(epoch, lookback=2), state.shard)
later_committee = get_period_committee(beacon_state, compute_period_start_epoch(epoch, lookback=1), state.shard)
if index in earlier_committee:
state.earlier_committee_fees[earlier_committee.index(index)] += delta
elif index in later_committee:
state.later_committee_fees[later_committee.index(index)] += delta
older_committee = get_period_committee(state, shard_state.shard, compute_shard_period_start_epoch(epoch, 2))
newer_committee = get_period_committee(state, shard_state.shard, compute_shard_period_start_epoch(epoch, 1))
if index in older_committee:
shard_state.older_committee_fees[older_committee.index(index)] += delta
elif index in newer_committee:
shard_state.newer_committee_fees[newer_committee.index(index)] += delta
```
## Genesis
### `get_genesis_shard_state`
```python
def get_genesis_shard_state(state: BeaconState, shard: Shard) -> ShardState:
older_committee = get_period_committee(state, shard, compute_shard_period_start_epoch(SHARD_GENESIS_EPOCH, 2))
newer_committee = get_period_committee(state, shard, compute_shard_period_start_epoch(SHARD_GENESIS_EPOCH, 1))
return ShardState(
shard=shard,
slot=ShardSlot(SHARD_GENESIS_EPOCH * SHARD_SLOTS_PER_EPOCH),
block_size_price=MIN_BLOCK_SIZE_PRICE,
older_committee_rewards=[Gwei(0) for _ in range(len(older_committee))],
newer_committee_rewards=[Gwei(0) for _ in range(len(newer_committee))],
older_committee_fees=[Gwei(0) for _ in range(len(older_committee))],
newer_committee_fees=[Gwei(0) for _ in range(len(newer_committee))],
)
```
### `get_genesis_shard_block`
```python
def get_genesis_shard_block(state: BeaconState, shard: Shard) -> ShardBlock:
genesis_state = get_genesis_shard_state(state, shard)
return ShardBlock(data=ShardBlockData(
shard=shard,
slot=ShardSlot(SHARD_GENESIS_EPOCH * SHARD_SLOTS_PER_EPOCH),
state_root=hash_tree_root(genesis_state),
))
```
## Shard state transition function
The post-state corresponding to a pre-state `state`, a beacon state `beacon_state`, and a block `block` is defined as `shard_state_transition(state, beacon_state, block)`. State transitions that trigger an unhandled exception (e.g. a failed `assert` or an out-of-range list access) are considered invalid.
```python
def shard_state_transition(state: ShardState,
beacon_state: BeaconState,
def shard_state_transition(state: BeaconState,
shard_state: ShardState,
block: ShardBlock,
validate_state_root: bool=False) -> ShardState:
# Process slots (including those with no blocks) since block
process_shard_slots(state, beacon_state, block.slot)
process_shard_slots(state, shard_state, block.data.slot)
# Process block
process_shard_block(state, beacon_state, block)
process_shard_block(state, shard_state, block)
# Validate state root (`validate_state_root == True` in production)
if validate_state_root:
assert block.state_root == hash_tree_root(state)
assert block.data.state_root == hash_tree_root(shard_state)
# Return post-state
return state
return shard_state
```
```python
def process_shard_slots(state: ShardState, beacon_state: BeaconState, slot: ShardSlot) -> None:
assert state.slot <= slot
while state.slot < slot:
process_shard_slot(state)
def process_shard_slots(state: BeaconState, shard_state: ShardState, slot: ShardSlot) -> None:
assert shard_state.slot <= slot
while shard_state.slot < slot:
process_shard_slot(state, shard_state)
# Process period on the start slot of the next period
if (state.slot + 1) % (SHARD_SLOTS_PER_EPOCH * EPOCHS_PER_SHARD_PERIOD) == 0:
process_shard_period(state)
state.slot += ShardSlot(1)
if (shard_state.slot + 1) % (SHARD_SLOTS_PER_EPOCH * EPOCHS_PER_SHARD_PERIOD) == 0:
process_shard_period(state, shard_state)
shard_state.slot += ShardSlot(1)
```
```python
def process_shard_slot(state: ShardState, beacon_state: BeaconState, slot: ShardSlot) -> None:
def process_shard_slot(state: BeaconState, shard_state: ShardState) -> None:
# Cache state root
if state.latest_block_header.state_root == Hash():
state.latest_block_header.state_root = hash_tree_root(state)
# Save state roots in history accumulator
previous_state_root = hash_tree_root(state)
if state.latest_block_header_data.state_root == Bytes32():
state.latest_block_header_data.state_root = previous_state_root
# Cache state root in history accumulator
depth = 0
state_root = hash_tree_root(state)
while state.slot % 2**depth == 0 and depth < HISTORY_ACCUMULATOR_VECTOR:
state.history_accumulator[depth] = state_root
state.history_accumulator[depth] = previous_state_root
depth += 1
```
### Period processing
```python
def process_shard_period(state: ShardState, beacon_state: BeaconState) -> None:
def process_shard_period(shard_state: ShardState, state: BeaconState) -> None:
epoch = compute_epoch_of_shard_slot(state.slot)
earlier_committee = get_period_committee(
beacon_state,
compute_period_start_epoch(epoch, lookback=2),
state.shard,
)
later_committee = get_period_committee(
beacon_state,
compute_period_start_epoch(epoch, lookback=1),
state.shard,
)
state.receipt_root = hash_tree_root(List[ShardReceiptDelta, TARGET_PERSISTENT_COMMITTEE_SIZE]([
ShardReceiptDelta(validator_index, state.earlier_committee_rewards[i], state.earlier_committee_fees[i])
for i, validator_index in enumerate(earlier_committee)
older_committee = get_period_committee(state, state.shard, compute_shard_period_start_epoch(epoch, 2))
newer_committee = get_period_committee(state, state.shard, compute_shard_period_start_epoch(epoch, 1))
# Compute receipt root for older committee
state.receipt_root = hash_tree_root(List[ShardReceipt, MAX_PERIOD_COMMITTEE_SIZE]([
ShardReceipt(validator_index, state.older_committee_rewards[i], state.older_committee_fees[i])
for i, validator_index in enumerate(older_committee)
]))
state.earlier_committee_rewards = state.later_committee_rewards
state.earlier_committee_fees = state.later_committee_fees
state.later_committee_rewards = [REWARD_COEFFICIENT_BASE for _ in range(len(later_committee))]
state.later_committee_fees = [Gwei(0) for _ in range(len(later_committee))]
# Rotate rewards and fees
state.older_committee_rewards = state.newer_committee_rewards
state.newer_committee_rewards = [Gwei(0) for _ in range(len(newer_committee))]
state.older_committee_fees = state.newer_committee_fees
state.newer_committee_fees = [Gwei(0) for _ in range(len(newer_committee))]
```
### Block processing
```python
def process_shard_block(state: ShardState, beacon_state: BeaconState, block: ShardBlock) -> None:
process_shard_block_header(state, beacon_state, block)
process_shard_attestations(state, beacon_state, block
process_shard_block_data_fees(state, beacon_state, block)
def process_shard_block(state: BeaconState, shard_state: ShardState, block: ShardBlock) -> None:
process_shard_block_header(state, shard_state, block)
process_shard_attestations(state, shard_state, block)
process_shard_block_size_fee(state, shard_state, block)
```
#### Block header
```python
def process_shard_block_header(state: ShardState, beacon_state: BeaconState, block: ShardBlock) -> None:
def process_shard_block_header(state: BeaconState, shard_state: ShardState, block: ShardBlock) -> None:
# Verify that the slots match
assert block.slot == state.slot
data = block.data
assert data.slot == state.slot
# Verify that the beacon chain root matches
parent_epoch = compute_epoch_of_shard_slot(state.latest_block_header_data.slot)
assert data.beacon_block_root == get_block_root(state, parent_epoch)
# Verify that the parent matches
if block.parent_root != Hash():
assert block.parent_root == signing_root(state.latest_block_header)
assert data.parent_root == hash_tree_root(state.latest_block_header_data)
# Save current block as the new latest block
state.latest_block_header = ShardBlockHeader(
slot=block.slot,
beacon_chain_root=block.beacon_chain_root,
parent_root=block.parent_root,
state.latest_block_header_data = ShardBlockHeaderData(
slot=data.slot,
beacon_block_root=data.beacon_block_root,
parent_root=data.parent_root,
# `state_root` is zeroed and overwritten in the next `process_shard_slot` call
aggregation_bits=block.aggregation_bits,
total_bytes=block.total_bytes,
body_root=hash_tree_root(block.body),
# `signatures` is zeroed
aggregation_bits=data.aggregation_bits,
block_size_sum=data.block_size_sum,
body_root=hash_tree_root(data.body),
)
# Verify proposer signature
proposer_index = get_shard_proposer_index(beacon_state, state.shard, block.slot)
pubkey = beacon_state.validators[proposer_index].pubkey
domain = get_domain(beacon_state, DOMAIN_SHARD_PROPOSER, compute_epoch_of_shard_slot(block.slot))
assert bls_verify(pubkey, signing_root(block), block.signatures.proposer, domain)
# Verify total bytes count
state.total_bytes += len(block.body)
assert block.total_bytes == state.total_bytes
proposer_index = get_shard_proposer_index(state, state.shard, data.slot)
pubkey = state.validators[proposer_index].pubkey
domain = get_domain(state, DOMAIN_SHARD_PROPOSER, compute_epoch_of_shard_slot(data.slot))
assert bls_verify(pubkey, hash_tree_root(block.data), block.signatures.proposer, domain)
# Verify total body bytes count
state.block_size_sum += SHARD_HEADER_SIZE + len(data.body)
assert data.block_size_sum == state.block_size_sum
```
#### Attestations
```python
def process_shard_attestations(state: ShardState, beacon_state: BeaconState, block: ShardBlock) -> None:
persistent_committee = get_persistent_committee(beacon_state, state.shard, block.slot)
def process_shard_attestations(state: BeaconState, shard_state: ShardState, block: ShardBlock) -> None:
data = block.data
pubkeys = []
attestation_count = 0
base_reward = get_shard_base_reward(beacon_state)
for i, validator_index in enumerate(persistent_committee):
if block.aggregation_bits[i]:
pubkeys.append(beacon_state.validators[validator_index].pubkey)
add_reward(state, beacon_state, validator_index, base_reward)
shard_committee = get_shard_committee(state, state.shard, data.slot)
for i, validator_index in enumerate(shard_committee):
if data.aggregation_bits[i]:
pubkeys.append(state.validators[validator_index].pubkey)
add_reward(state, shard_state, validator_index, get_base_reward(state, validator_index))
attestation_count += 1
for i in range(len(persistent_committee), TARGET_PERSISTENT_COMMITTEE_SIZE):
assert block.aggregation_bits[i] is False or block.aggregation_bits[i] == 0 # TODO: Fix Bitvector
# Verify aggregate signature
domain = get_domain(beacon_state, DOMAIN_SHARD_ATTESTER, compute_epoch_of_shard_slot(block.slot))
assert bls_verify(bls_aggregate_pubkeys(pubkeys), block.parent_root, block.signatures.attesters, domain)
# Proposer micro-rewards
add_reward(state, beacon_state, proposer_index, attestation_count * get_shard_base_reward(beacon_state) // PROPOSER_REWARD_QUOTIENT)
# Verify there are no extraneous bits set beyond the shard committee
for i in range(len(shard_committee), 2 * MAX_PERIOD_COMMITTEE_SIZE):
assert data.aggregation_bits[i] == 0b0
# Verify attester aggregate signature
domain = get_domain(state, DOMAIN_SHARD_ATTESTER, compute_epoch_of_shard_slot(data.slot))
message = hash_tree_root(ShardCheckpoint(shard_state.slot, data.parent_root))
assert bls_verify(bls_aggregate_pubkeys(pubkeys), message, block.signatures.attesters, domain)
# Proposer micro-reward
proposer_index = get_shard_proposer_index(state, state.shard, data.slot)
reward = attestation_count * get_base_reward(state, proposer_index) // PROPOSER_REWARD_QUOTIENT
add_reward(state, shard_state, proposer_index, reward)
```
#### Block data fees
#### Block size fee
```python
def process_shard_block_data_fees(state: ShardState, beacon_state: BeaconState, block: ShardBlock) -> None:
base_reward = get_shard_base_reward(beacon_state)
add_fee(state, beacon_state, proposer_index, state.basefee * len(block.body) // SHARD_BLOCK_SIZE_LIMIT)
QUOTIENT = SHARD_BLOCK_SIZE_LIMIT * BASEFEE_ADJUSTMENT_FACTOR
if len(block.body) > SHARD_BLOCK_SIZE_TARGET:
state.basefee += Gwei(max(1, state.basefee * (len(block.body) - SHARD_BLOCK_SIZE_TARGET) // QUOTIENT))
elif len(block.body) < SHARD_BLOCK_SIZE_TARGET:
state.basefee -= Gwei(max(1, state.basefee * (len(block.body) - SHARD_BLOCK_SIZE_TARGET) // QUOTIENT))
state.basefee = Gwei(max(1, min( EFFECTIVE_BALANCE_INCREMENT // EPOCHS_PER_SHARD_PERIOD // SHARD_SLOTS_PER_EPOCH,
state.basefee,
)))
```
## Object validity
### Shard block validation: preliminary
Accept a shard block `block` only if all of the following are correct:
* Either `block.parent_root == Hash()` or a block `parent` such that `signing_root(parent) == block.parent_root` has already been accepted.
* `block.beacon_chain_root == get_block_root(head_beacon_state, compute_epoch_of_shard_slot(parent.slot))` where `head_beacon_state` is the current beacon chain head state. Alternatively phrased, a beacon chain block `beacon_ref` such that `signing_root(beacon_ref) == block.beacon_chain_root` has already been accepted and is part of the canonical chain, and no block with slot `beacon_ref.slot < slot <= compute_start_slot_of_epoch(compute_epoch_of_shard_slot(parent.slot))` is part of the canonical chain.
* Let `beacon_state` be the state where `beacon_ref.state_root == hash_tree_root(beacon_state)`. Let `prev_state` be the post-state of the `parent` if the `parent` exists, otherwise let it be `get_default_shard_state(beacon_state, shard)` (defined below). `block.state_root` must equal the `hash_tree_root` of the state after applying `shard_state_transition(prev_state, beacon_state, block)`.
Note that these acceptance conditions depend on the canonical beacon chain; when the canonical beacon chain reorganizes, the eligibility of shard blocks should be re-evaluated.
### Beacon attestations
Let:
- `pre_state` be the `ShardState` before processing any blocks
- `shard_blocks_or_state_roots` be the `Union[ShardBlock, Hash]` list such that `shard_blocks[slot]` is the canonical `ShardBlock` for shard `pre_state.shard` at slot `slot` if a block exists, or the post-state-root of processing state up to and including that slot if a block does not exist.
- `beacon_state` be the canonical `BeaconState`
- `valid_attestations` be the set of valid `Attestation` objects, recursively defined
- `candidate` be a candidate `Attestation` which is valid under Phase 0 rules, and for which validity is to be determined under Phase 1 rules by running `is_valid_beacon_attestation`
```python
def is_valid_beacon_attestation(pre_state: ShardState,
shard_blocks_or_state_roots: Sequence[Union[ShardBlock, Hash]],
beacon_state: BeaconState,
valid_attestations: Set[Attestation],
candidate: Attestation) -> bool:
# Check if attestation is already determined valid
for attestation in valid_attestations:
if candidate == attestation:
return True
# Check previous attestation
if candidate.data.previous_crosslink.epoch <= PHASE_1_FORK_EPOCH:
assert candidate.data.previous_crosslink.data_root == Hash()
def process_shard_block_size_fee(state: BeaconState, shard_state: ShardState, block: ShardBlock) -> None:
# Charge proposer block size fee
proposer_index = get_shard_proposer_index(state, state.shard, block.data.slot)
block_size = SHARD_HEADER_SIZE + len(block.data.body)
add_fee(state, shard_state, proposer_index, state.block_size_price * block_size // SHARD_BLOCK_SIZE_LIMIT)
# Calculate new block size price
if block_size > SHARD_BLOCK_SIZE_TARGET:
size_delta = block_size - SHARD_BLOCK_SIZE_TARGET
price_delta = Gwei(state.block_size_price * size_delta // SHARD_BLOCK_SIZE_LIMIT // BLOCK_SIZE_PRICE_QUOTIENT)
# The maximum gas price caps the amount burnt on gas fees within a period to 32 ETH
MAX_BLOCK_SIZE_PRICE = MAX_EFFECTIVE_BALANCE // EPOCHS_PER_SHARD_PERIOD // SHARD_SLOTS_PER_EPOCH
state.block_size_price = min(MAX_BLOCK_SIZE_PRICE, state.block_size_price + price_delta)
else:
previous_attestation = next(
(attestation for attestation in valid_attestations
if attestation.data.crosslink.data_root == candidate.data.previous_crosslink.data_root),
None,
)
assert previous_attestation is not None
assert candidate.data.previous_attestation.epoch < compute_epoch_of_slot(candidate.data.slot)
# Check crosslink data root
start_epoch = beacon_state.crosslinks[pre_state.shard].epoch
end_epoch = min(compute_epoch_of_slot(candidate.data.slot) - CROSSLINK_LOOKBACK,
start_epoch + MAX_EPOCHS_PER_CROSSLINK)
blocks = []
for slot in range(start_epoch * SLOTS_PER_EPOCH, end_epoch * SLOTS_PER_EPOCH):
if isinstance(shard_blocks_or_state_roots[slot], ShardBlock):
blocks.append(shard_blocks_or_state_roots[slot])
else:
blocks.append(ShardBlock(
slot=slot,
state_root=shard_blocks_or_state_roots[slot],
total_bytes=pre_state.total_bytes,
))
assert candidate.data.crosslink.data_root == compute_crosslink_data_root(blocks)
return True
size_delta = SHARD_BLOCK_SIZE_TARGET - block_size
price_delta = Gwei(state.block_size_price * size_delta // SHARD_BLOCK_SIZE_LIMIT // BLOCK_SIZE_PRICE_QUOTIENT)
state.block_size_price = max(MIN_BLOCK_SIZE_PRICE, state.block_size_price - price_delta)
```
## Shard fork choice rule
The fork choice rule for any shard is LMD GHOST using the shard attestations of the persistent committee and the beacon chain attestations of the crosslink committee currently assigned to that shard, but instead of being rooted in the genesis it is rooted in the block referenced in the most recent accepted crosslink (i.e. `state.crosslinks[shard].shard_block_root`). Only blocks whose `beacon_chain_root` is the block in the main beacon chain at the specified `slot` should be considered. (If the beacon chain skips a slot, then the block at that slot is considered to be the block in the beacon chain at the highest slot lower than that slot.)
The fork choice rule for any shard is LMD GHOST using the shard attestations of the shard committee and the beacon chain attestations of the crosslink committee currently assigned to that shard, but instead of being rooted in the genesis it is rooted in the block referenced in the most recent accepted crosslink (i.e. `state.crosslinks[shard].shard_block_root`). Only blocks whose `beacon_block_root` is the block in the main beacon chain at the specified `slot` should be considered. (If the beacon chain skips a slot, then the block at that slot is considered to be the block in the beacon chain at the highest slot lower than that slot.)