WIP. Fixing mypy errors

This commit is contained in:
Hsiao-Wei Wang 2022-11-28 20:16:18 +08:00
parent 4f32fd95d6
commit b3a176689d
No known key found for this signature in database
GPG Key ID: AE3D6B174F971DE4
3 changed files with 23 additions and 35 deletions

View File

@ -666,7 +666,7 @@ get_expected_withdrawals = get_empty_list_result(get_expected_withdrawals)
# End
#
def retrieve_blobs_sidecar(slot: Slot, beacon_block_root: Root) -> Optional[BlobsSidecar]:
def retrieve_blobs_sidecar(slot: Slot, beacon_block_root: Root) -> PyUnion[BlobsSidecar, str]:
# pylint: disable=unused-argument
return "TEST"'''
@ -686,10 +686,6 @@ spec_builders = {
}
def is_spec_defined_type(value: str) -> bool:
return value.startswith(('ByteList', 'Union', 'Vector', 'List'))
def objects_to_spec(preset_name: str,
spec_object: SpecObject,
builder: SpecBuilder,
@ -702,15 +698,6 @@ def objects_to_spec(preset_name: str,
[
f"class {key}({value}):\n pass\n"
for key, value in spec_object.custom_types.items()
if not is_spec_defined_type(value)
]
)
+ ('\n\n' if len([key for key, value in spec_object.custom_types.items() if is_spec_defined_type(value)]) > 0 else '')
+ '\n\n'.join(
[
f"{key} = {value}\n"
for key, value in spec_object.custom_types.items()
if is_spec_defined_type(value)
]
)
)

View File

@ -175,10 +175,13 @@ but MUST NOT be considered valid until a valid `BlobsSidecar` has been downloade
def is_data_available(slot: Slot, beacon_block_root: Root, blob_kzg_commitments: Sequence[KZGCommitment]) -> bool:
# `retrieve_blobs_sidecar` is implementation dependent, raises an exception if not available.
sidecar = retrieve_blobs_sidecar(slot, beacon_block_root)
if sidecar == "TEST":
return True # For testing; remove once we have a way to inject `BlobsSidecar` into tests
validate_blobs_sidecar(slot, beacon_block_root, blob_kzg_commitments, sidecar)
# For testing, `retrieve_blobs_sidecar` returns "TEST.
# TODO: Remove it once we have a way to inject `BlobsSidecar` into tests.
if isinstance(sidecar, str):
return True
validate_blobs_sidecar(slot, beacon_block_root, blob_kzg_commitments, sidecar)
return True
```
@ -216,7 +219,7 @@ def tx_peek_blob_versioned_hashes(opaque_tx: Transaction) -> Sequence[VersionedH
```python
def verify_kzg_commitments_against_transactions(transactions: Sequence[Transaction],
kzg_commitments: Sequence[KZGCommitment]) -> bool:
all_versioned_hashes = []
all_versioned_hashes: List[VersionedHash] = []
for tx in transactions:
if tx[0] == BLOB_TX_TYPE:
all_versioned_hashes += tx_peek_blob_versioned_hashes(tx)
@ -283,7 +286,7 @@ def process_execution_payload(state: BeaconState, payload: ExecutionPayload, exe
#### Blob KZG commitments
```python
def process_blob_kzg_commitments(state: BeaconState, body: BeaconBlockBody):
def process_blob_kzg_commitments(state: BeaconState, body: BeaconBlockBody) -> None:
# pylint: disable=unused-argument
assert verify_kzg_commitments_against_transactions(body.execution_payload.transactions, body.blob_kzg_commitments)
```

View File

@ -144,7 +144,7 @@ def bytes_to_bls_field(b: Bytes32) -> BLSFieldElement:
"""
Convert 32-byte value to a BLS field scalar. The output is not uniform over the BLS field.
"""
return int.from_bytes(b, ENDIANNESS) % BLS_MODULUS
return BLSFieldElement(int.from_bytes(b, ENDIANNESS) % BLS_MODULUS)
```
#### `blob_to_polynomial`
@ -210,7 +210,7 @@ def bls_modular_inverse(x: BLSFieldElement) -> BLSFieldElement:
Compute the modular inverse of x
i.e. return y such that x * y % BLS_MODULUS == 1 and return 0 for x == 0
"""
return pow(x, -1, BLS_MODULUS) if x != 0 else 0
return BLSFieldElement(pow(x, -1, BLS_MODULUS)) if x != 0 else BLSFieldElement(0)
```
#### `div`
@ -220,7 +220,7 @@ def div(x: BLSFieldElement, y: BLSFieldElement) -> BLSFieldElement:
"""
Divide two field elements: ``x`` by `y``.
"""
return (int(x) * int(bls_modular_inverse(y))) % BLS_MODULUS
return BLSFieldElement((int(x) * int(bls_modular_inverse(y))) % BLS_MODULUS)
```
#### `g1_lincomb`
@ -251,7 +251,7 @@ def poly_lincomb(polys: Sequence[Polynomial],
for v, s in zip(polys, scalars):
for i, x in enumerate(v):
result[i] = (result[i] + int(s) * int(x)) % BLS_MODULUS
return [BLSFieldElement(x) for x in result]
return Polynomial([BLSFieldElement(x) for x in result])
```
#### `compute_powers`
@ -284,7 +284,7 @@ def evaluate_polynomial_in_evaluation_form(polynomial: Polynomial,
"""
width = len(polynomial)
assert width == FIELD_ELEMENTS_PER_BLOB
inverse_width = bls_modular_inverse(width)
inverse_width = bls_modular_inverse(BLSFieldElement(width))
# Make sure we won't divide by zero during division
assert z not in ROOTS_OF_UNITY
@ -293,9 +293,11 @@ def evaluate_polynomial_in_evaluation_form(polynomial: Polynomial,
result = 0
for i in range(width):
result += div(int(polynomial[i]) * int(roots_of_unity_brp[i]), (int(z) - int(roots_of_unity_brp[i])))
result = result * (pow(z, width, BLS_MODULUS) - 1) * inverse_width % BLS_MODULUS
return result
a = BLSFieldElement(int(polynomial[i]) * int(roots_of_unity_brp[i]) % BLS_MODULUS)
b = BLSFieldElement((int(BLS_MODULUS) + int(z) - int(roots_of_unity_brp[i])) % BLS_MODULUS)
result += int(div(a, b) % BLS_MODULUS)
result = result * int(pow(z, width, BLS_MODULUS) - 1) * int(inverse_width)
return BLSFieldElement(result % BLS_MODULUS)
```
### KZG
@ -355,17 +357,13 @@ def compute_kzg_proof(polynomial: Polynomial, z: BLSFieldElement) -> KZGProof:
Compute KZG proof at point `z` with `polynomial` being in evaluation form
Do this by computing the quotient polynomial in evaluation form: q(x) = (p(x) - p(z)) / (x - z)
"""
# To avoid SSZ overflow/underflow, convert element into int
polynomial = [int(i) for i in polynomial]
z = int(z)
y = evaluate_polynomial_in_evaluation_form(polynomial, z)
polynomial_shifted = [(p - int(y)) % BLS_MODULUS for p in polynomial]
polynomial_shifted = [BLSFieldElement((int(p) - int(y)) % BLS_MODULUS) for p in polynomial]
# Make sure we won't divide by zero during division
assert z not in ROOTS_OF_UNITY
denominator_poly = [(int(x) - z) % BLS_MODULUS for x in bit_reversal_permutation(ROOTS_OF_UNITY)]
denominator_poly = [BLSFieldElement((int(x) - int(z)) % BLS_MODULUS)
for x in bit_reversal_permutation(ROOTS_OF_UNITY)]
# Calculate quotient polynomial by doing point-by-point division
quotient_polynomial = [div(a, b) for a, b in zip(polynomial_shifted, denominator_poly)]
@ -392,7 +390,7 @@ def compute_aggregated_poly_and_commitment(
r_powers, evaluation_challenge = compute_challenges(polynomials, kzg_commitments)
# Create aggregated polynomial in evaluation form
aggregated_poly = Polynomial(poly_lincomb(polynomials, r_powers))
aggregated_poly = poly_lincomb(polynomials, r_powers)
# Compute commitment to aggregated polynomial
aggregated_poly_commitment = KZGCommitment(g1_lincomb(kzg_commitments, r_powers))