Rename matrix_lincomb to vector_lincomb and lincomb to g1_lincomb
This commit is contained in:
parent
b63ed22588
commit
b35155005b
|
@ -15,8 +15,8 @@
|
||||||
- [BLS12-381 helpers](#bls12-381-helpers)
|
- [BLS12-381 helpers](#bls12-381-helpers)
|
||||||
- [`bls_modular_inverse`](#bls_modular_inverse)
|
- [`bls_modular_inverse`](#bls_modular_inverse)
|
||||||
- [`div`](#div)
|
- [`div`](#div)
|
||||||
- [`lincomb`](#lincomb)
|
- [`g1_lincomb`](#g1_lincomb)
|
||||||
- [`matrix_lincomb`](#matrix_lincomb)
|
- [`vector_lincomb`](#vector_lincomb)
|
||||||
- [KZG](#kzg)
|
- [KZG](#kzg)
|
||||||
- [`blob_to_kzg_commitment`](#blob_to_kzg_commitment)
|
- [`blob_to_kzg_commitment`](#blob_to_kzg_commitment)
|
||||||
- [`verify_kzg_proof`](#verify_kzg_proof)
|
- [`verify_kzg_proof`](#verify_kzg_proof)
|
||||||
|
@ -85,10 +85,10 @@ def div(x: BLSFieldElement, y: BLSFieldElement) -> BLSFieldElement:
|
||||||
return (int(x) * int(bls_modular_inverse(y))) % BLS_MODULUS
|
return (int(x) * int(bls_modular_inverse(y))) % BLS_MODULUS
|
||||||
```
|
```
|
||||||
|
|
||||||
#### `lincomb`
|
#### `g1_lincomb`
|
||||||
|
|
||||||
```python
|
```python
|
||||||
def lincomb(points: Sequence[KZGCommitment], scalars: Sequence[BLSFieldElement]) -> KZGCommitment:
|
def g1_lincomb(points: Sequence[KZGCommitment], scalars: Sequence[BLSFieldElement]) -> KZGCommitment:
|
||||||
"""
|
"""
|
||||||
BLS multiscalar multiplication. This function can be optimized using Pippenger's algorithm and variants.
|
BLS multiscalar multiplication. This function can be optimized using Pippenger's algorithm and variants.
|
||||||
"""
|
"""
|
||||||
|
@ -99,10 +99,10 @@ def lincomb(points: Sequence[KZGCommitment], scalars: Sequence[BLSFieldElement])
|
||||||
return KZGCommitment(bls.G1_to_bytes48(result))
|
return KZGCommitment(bls.G1_to_bytes48(result))
|
||||||
```
|
```
|
||||||
|
|
||||||
#### `matrix_lincomb`
|
#### `vector_lincomb`
|
||||||
|
|
||||||
```python
|
```python
|
||||||
def matrix_lincomb(vectors: Sequence[Sequence[BLSFieldElement]],
|
def vector_lincomb(vectors: Sequence[Sequence[BLSFieldElement]],
|
||||||
scalars: Sequence[BLSFieldElement]) -> Sequence[BLSFieldElement]:
|
scalars: Sequence[BLSFieldElement]) -> Sequence[BLSFieldElement]:
|
||||||
"""
|
"""
|
||||||
Given a list of ``vectors``, interpret it as a 2D matrix and compute the linear combination
|
Given a list of ``vectors``, interpret it as a 2D matrix and compute the linear combination
|
||||||
|
@ -123,7 +123,7 @@ KZG core functions. These are also defined in EIP-4844 execution specs.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
def blob_to_kzg_commitment(blob: Blob) -> KZGCommitment:
|
def blob_to_kzg_commitment(blob: Blob) -> KZGCommitment:
|
||||||
return lincomb(KZG_SETUP_LAGRANGE, blob)
|
return g1_lincomb(KZG_SETUP_LAGRANGE, blob)
|
||||||
```
|
```
|
||||||
|
|
||||||
#### `verify_kzg_proof`
|
#### `verify_kzg_proof`
|
||||||
|
@ -165,7 +165,7 @@ def compute_kzg_proof(polynomial: Sequence[BLSFieldElement], z: BLSFieldElement)
|
||||||
|
|
||||||
# Calculate quotient polynomial by doing point-by-point division
|
# Calculate quotient polynomial by doing point-by-point division
|
||||||
quotient_polynomial = [div(a, b) for a, b in zip(polynomial_shifted, denominator_poly)]
|
quotient_polynomial = [div(a, b) for a, b in zip(polynomial_shifted, denominator_poly)]
|
||||||
return KZGProof(lincomb(KZG_SETUP_LAGRANGE, quotient_polynomial))
|
return KZGProof(g1_lincomb(KZG_SETUP_LAGRANGE, quotient_polynomial))
|
||||||
```
|
```
|
||||||
|
|
||||||
### Polynomials
|
### Polynomials
|
||||||
|
|
|
@ -127,10 +127,10 @@ def compute_aggregated_poly_and_commitment(
|
||||||
r_powers = compute_powers(r, len(kzg_commitments))
|
r_powers = compute_powers(r, len(kzg_commitments))
|
||||||
|
|
||||||
# Create aggregated polynomial in evaluation form
|
# Create aggregated polynomial in evaluation form
|
||||||
aggregated_poly = Polynomial(matrix_lincomb(blobs, r_powers))
|
aggregated_poly = Polynomial(vector_lincomb(blobs, r_powers))
|
||||||
|
|
||||||
# Compute commitment to aggregated polynomial
|
# Compute commitment to aggregated polynomial
|
||||||
aggregated_poly_commitment = KZGCommitment(lincomb(kzg_commitments, r_powers))
|
aggregated_poly_commitment = KZGCommitment(g1_lincomb(kzg_commitments, r_powers))
|
||||||
|
|
||||||
return aggregated_poly, aggregated_poly_commitment
|
return aggregated_poly, aggregated_poly_commitment
|
||||||
```
|
```
|
||||||
|
|
Loading…
Reference in New Issue