Merge pull request #3579 from asn-d6/peerdas_public_method_bytes

peerDAS: Public methods must accept raw bytes
This commit is contained in:
George Kadianakis 2024-01-26 17:36:54 +02:00 committed by GitHub
commit ae3ef6f330
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 71 additions and 30 deletions

View File

@ -12,6 +12,8 @@
- [Preset](#preset)
- [Cells](#cells)
- [Helper functions](#helper-functions)
- [BLS12-381 helpers](#bls12-381-helpers)
- [`bytes_to_cell`](#bytes_to_cell)
- [Linear combinations](#linear-combinations)
- [`g2_lincomb`](#g2_lincomb)
- [FFTs](#ffts)
@ -81,6 +83,18 @@ Cells are the smallest unit of blob data that can come with their own KZG proofs
## Helper functions
### BLS12-381 helpers
#### `bytes_to_cell`
```python
def bytes_to_cell(cell_bytes: Vector[Bytes32, FIELD_ELEMENTS_PER_CELL]) -> Cell:
"""
Convert untrusted bytes into a Cell.
"""
return [bytes_to_bls_field(element) for element in cell_bytes]
```
### Linear combinations
#### `g2_lincomb`
@ -332,7 +346,7 @@ def verify_kzg_proof_multi_impl(commitment: KZGCommitment,
#### `coset_for_cell`
```python
def coset_for_cell(cell_id: int) -> Cell:
def coset_for_cell(cell_id: CellID) -> Cell:
"""
Get the coset for a given ``cell_id``
"""
@ -399,10 +413,10 @@ def compute_cells(blob: Blob) -> Vector[Cell, CELLS_PER_BLOB]:
#### `verify_cell_proof`
```python
def verify_cell_proof(commitment: KZGCommitment,
cell_id: int,
cell: Cell,
proof: KZGProof) -> bool:
def verify_cell_proof(commitment_bytes: Bytes48,
cell_id: CellID,
cell_bytes: Vector[Bytes32, FIELD_ELEMENTS_PER_CELL],
proof_bytes: Bytes48) -> bool:
"""
Check a cell proof
@ -410,19 +424,26 @@ def verify_cell_proof(commitment: KZGCommitment,
"""
coset = coset_for_cell(cell_id)
return verify_kzg_proof_multi_impl(commitment, coset, cell, proof)
return verify_kzg_proof_multi_impl(
bytes_to_kzg_commitment(commitment_bytes),
coset,
bytes_to_cell(cell_bytes),
bytes_to_kzg_proof(proof_bytes))
```
#### `verify_cell_proof_batch`
```python
def verify_cell_proof_batch(row_commitments: Sequence[KZGCommitment],
row_ids: Sequence[int],
column_ids: Sequence[int],
cells: Sequence[Cell],
proofs: Sequence[KZGProof]) -> bool:
def verify_cell_proof_batch(row_commitments_bytes: Sequence[Bytes48],
row_ids: Sequence[uint64],
column_ids: Sequence[uint64],
cells_bytes: Sequence[Vector[Bytes32, FIELD_ELEMENTS_PER_CELL]],
proofs_bytes: Sequence[Bytes48]) -> bool:
"""
Check multiple cell proofs. This function implements the naive algorithm of checking every cell
Verify a set of cells, given their corresponding proofs and their coordinates (row_id, column_id) in the blob
matrix. The list of all commitments is also provided in row_commitments_bytes.
This function implements the naive algorithm of checking every cell
individually; an efficient algorithm can be found here:
https://ethresear.ch/t/a-universal-verification-equation-for-data-availability-sampling/13240
@ -432,9 +453,15 @@ def verify_cell_proof_batch(row_commitments: Sequence[KZGCommitment],
Public method.
"""
assert len(cells_bytes) == len(proofs_bytes) == len(row_ids) == len(column_ids)
# Get commitments via row IDs
commitments = [row_commitments[row_id] for row_id in row_ids]
commitments_bytes = [row_commitments_bytes[row_id] for row_id in row_ids]
# Get objects from bytes
commitments = [bytes_to_kzg_commitment(commitment_bytes) for commitment_bytes in commitments_bytes]
cells = [bytes_to_cell(cell_bytes) for cell_bytes in cells_bytes]
proofs = [bytes_to_kzg_proof(proof_bytes) for proof_bytes in proofs_bytes]
return all(
verify_kzg_proof_multi_impl(commitment, coset_for_cell(column_id), cell, proof)
@ -447,7 +474,8 @@ def verify_cell_proof_batch(row_commitments: Sequence[KZGCommitment],
### `recover_polynomial`
```python
def recover_polynomial(cell_ids: Sequence[CellID], cells: Sequence[Cell]) -> Polynomial:
def recover_polynomial(cell_ids: Sequence[CellID],
cells_bytes: Sequence[Vector[Bytes32, FIELD_ELEMENTS_PER_CELL]]) -> Polynomial:
"""
Recovers a polynomial from 2 * FIELD_ELEMENTS_PER_CELL evaluations, half of which can be missing.
@ -457,7 +485,10 @@ def recover_polynomial(cell_ids: Sequence[CellID], cells: Sequence[Cell]) -> Pol
Public method.
"""
assert len(cell_ids) == len(cells)
assert len(cell_ids) == len(cells_bytes)
cells = [bytes_to_cell(cell_bytes) for cell_bytes in cells_bytes]
assert len(cells) >= CELLS_PER_BLOB // 2
missing_cell_ids = [cell_id for cell_id in range(CELLS_PER_BLOB) if cell_id not in cell_ids]
roots_of_unity_reduced = compute_roots_of_unity(CELLS_PER_BLOB)

View File

@ -10,6 +10,10 @@ from eth2spec.test.helpers.sharding import (
from eth2spec.utils.bls import BLS_MODULUS
def field_element_bytes(x):
return int.to_bytes(x % BLS_MODULUS, 32, "big")
@with_eip7594_and_later
@spec_test
@single_phase
@ -34,10 +38,13 @@ def test_verify_cell_proof(spec):
blob = get_sample_blob(spec)
commitment = spec.blob_to_kzg_commitment(blob)
cells, proofs = spec.compute_cells_and_proofs(blob)
cells_bytes = [[field_element_bytes(element) for element in cell] for cell in cells]
cell_id = 0
assert spec.verify_cell_proof(commitment, cell_id, cells[cell_id], proofs[cell_id])
assert spec.verify_cell_proof(commitment, cell_id, cells_bytes[cell_id], proofs[cell_id])
cell_id = 1
assert spec.verify_cell_proof(commitment, cell_id, cells[cell_id], proofs[cell_id])
assert spec.verify_cell_proof(commitment, cell_id, cells_bytes[cell_id], proofs[cell_id])
@with_eip7594_and_later
@ -47,13 +54,16 @@ def test_verify_cell_proof_batch(spec):
blob = get_sample_blob(spec)
commitment = spec.blob_to_kzg_commitment(blob)
cells, proofs = spec.compute_cells_and_proofs(blob)
cells_bytes = [[field_element_bytes(element) for element in cell] for cell in cells]
assert len(cells) == len(proofs)
assert spec.verify_cell_proof_batch(
row_commitments=[commitment],
row_ids=[0],
column_ids=[0, 1],
cells=cells[0:1],
proofs=proofs,
row_commitments_bytes=[commitment],
row_ids=[0, 0],
column_ids=[0, 4],
cells_bytes=[cells_bytes[0], cells_bytes[4]],
proofs_bytes=[proofs[0], proofs[4]],
)
@ -73,10 +83,10 @@ def test_recover_polynomial(spec):
# Extend data with Reed-Solomon and split the extended data in cells
cells = spec.compute_cells(blob)
cells_bytes = [[field_element_bytes(element) for element in cell] for cell in cells]
# Compute the cells we will be recovering from
cell_ids = []
known_cells = []
# First figure out just the indices of the cells
for i in range(N_SAMPLES):
j = rng.randint(0, spec.CELLS_PER_BLOB)
@ -84,10 +94,10 @@ def test_recover_polynomial(spec):
j = rng.randint(0, spec.CELLS_PER_BLOB)
cell_ids.append(j)
# Now the cells themselves
known_cells = [cells[cell_id] for cell_id in cell_ids]
known_cells_bytes = [cells_bytes[cell_id] for cell_id in cell_ids]
# Recover the data
recovered_data = spec.recover_polynomial(cell_ids, known_cells)
recovered_data = spec.recover_polynomial(cell_ids, known_cells_bytes)
# Check that the original data match the non-extended portion of the recovered data
assert original_polynomial == recovered_data[:len(recovered_data) // 2]