Merge pull request #3579 from asn-d6/peerdas_public_method_bytes
peerDAS: Public methods must accept raw bytes
This commit is contained in:
commit
ae3ef6f330
|
@ -12,6 +12,8 @@
|
|||
- [Preset](#preset)
|
||||
- [Cells](#cells)
|
||||
- [Helper functions](#helper-functions)
|
||||
- [BLS12-381 helpers](#bls12-381-helpers)
|
||||
- [`bytes_to_cell`](#bytes_to_cell)
|
||||
- [Linear combinations](#linear-combinations)
|
||||
- [`g2_lincomb`](#g2_lincomb)
|
||||
- [FFTs](#ffts)
|
||||
|
@ -81,6 +83,18 @@ Cells are the smallest unit of blob data that can come with their own KZG proofs
|
|||
|
||||
## Helper functions
|
||||
|
||||
### BLS12-381 helpers
|
||||
|
||||
#### `bytes_to_cell`
|
||||
|
||||
```python
|
||||
def bytes_to_cell(cell_bytes: Vector[Bytes32, FIELD_ELEMENTS_PER_CELL]) -> Cell:
|
||||
"""
|
||||
Convert untrusted bytes into a Cell.
|
||||
"""
|
||||
return [bytes_to_bls_field(element) for element in cell_bytes]
|
||||
```
|
||||
|
||||
### Linear combinations
|
||||
|
||||
#### `g2_lincomb`
|
||||
|
@ -244,7 +258,7 @@ def interpolate_polynomialcoeff(xs: Sequence[BLSFieldElement], ys: Sequence[BLSF
|
|||
summand, [(- int(weight_adjustment) * int(xs[j])) % BLS_MODULUS, weight_adjustment]
|
||||
)
|
||||
r = add_polynomialcoeff(r, summand)
|
||||
|
||||
|
||||
return r
|
||||
```
|
||||
|
||||
|
@ -332,7 +346,7 @@ def verify_kzg_proof_multi_impl(commitment: KZGCommitment,
|
|||
#### `coset_for_cell`
|
||||
|
||||
```python
|
||||
def coset_for_cell(cell_id: int) -> Cell:
|
||||
def coset_for_cell(cell_id: CellID) -> Cell:
|
||||
"""
|
||||
Get the coset for a given ``cell_id``
|
||||
"""
|
||||
|
@ -387,7 +401,7 @@ def compute_cells(blob: Blob) -> Vector[Cell, CELLS_PER_BLOB]:
|
|||
polynomial = blob_to_polynomial(blob)
|
||||
polynomial_coeff = polynomial_eval_to_coeff(polynomial)
|
||||
|
||||
extended_data = fft_field(polynomial_coeff + [0] * FIELD_ELEMENTS_PER_BLOB,
|
||||
extended_data = fft_field(polynomial_coeff + [0] * FIELD_ELEMENTS_PER_BLOB,
|
||||
compute_roots_of_unity(2 * FIELD_ELEMENTS_PER_BLOB))
|
||||
extended_data_rbo = bit_reversal_permutation(extended_data)
|
||||
return [extended_data_rbo[i * FIELD_ELEMENTS_PER_CELL:(i + 1) * FIELD_ELEMENTS_PER_CELL]
|
||||
|
@ -399,10 +413,10 @@ def compute_cells(blob: Blob) -> Vector[Cell, CELLS_PER_BLOB]:
|
|||
#### `verify_cell_proof`
|
||||
|
||||
```python
|
||||
def verify_cell_proof(commitment: KZGCommitment,
|
||||
cell_id: int,
|
||||
cell: Cell,
|
||||
proof: KZGProof) -> bool:
|
||||
def verify_cell_proof(commitment_bytes: Bytes48,
|
||||
cell_id: CellID,
|
||||
cell_bytes: Vector[Bytes32, FIELD_ELEMENTS_PER_CELL],
|
||||
proof_bytes: Bytes48) -> bool:
|
||||
"""
|
||||
Check a cell proof
|
||||
|
||||
|
@ -410,19 +424,26 @@ def verify_cell_proof(commitment: KZGCommitment,
|
|||
"""
|
||||
coset = coset_for_cell(cell_id)
|
||||
|
||||
return verify_kzg_proof_multi_impl(commitment, coset, cell, proof)
|
||||
return verify_kzg_proof_multi_impl(
|
||||
bytes_to_kzg_commitment(commitment_bytes),
|
||||
coset,
|
||||
bytes_to_cell(cell_bytes),
|
||||
bytes_to_kzg_proof(proof_bytes))
|
||||
```
|
||||
|
||||
#### `verify_cell_proof_batch`
|
||||
|
||||
```python
|
||||
def verify_cell_proof_batch(row_commitments: Sequence[KZGCommitment],
|
||||
row_ids: Sequence[int],
|
||||
column_ids: Sequence[int],
|
||||
cells: Sequence[Cell],
|
||||
proofs: Sequence[KZGProof]) -> bool:
|
||||
def verify_cell_proof_batch(row_commitments_bytes: Sequence[Bytes48],
|
||||
row_ids: Sequence[uint64],
|
||||
column_ids: Sequence[uint64],
|
||||
cells_bytes: Sequence[Vector[Bytes32, FIELD_ELEMENTS_PER_CELL]],
|
||||
proofs_bytes: Sequence[Bytes48]) -> bool:
|
||||
"""
|
||||
Check multiple cell proofs. This function implements the naive algorithm of checking every cell
|
||||
Verify a set of cells, given their corresponding proofs and their coordinates (row_id, column_id) in the blob
|
||||
matrix. The list of all commitments is also provided in row_commitments_bytes.
|
||||
|
||||
This function implements the naive algorithm of checking every cell
|
||||
individually; an efficient algorithm can be found here:
|
||||
https://ethresear.ch/t/a-universal-verification-equation-for-data-availability-sampling/13240
|
||||
|
||||
|
@ -432,10 +453,16 @@ def verify_cell_proof_batch(row_commitments: Sequence[KZGCommitment],
|
|||
|
||||
Public method.
|
||||
"""
|
||||
assert len(cells_bytes) == len(proofs_bytes) == len(row_ids) == len(column_ids)
|
||||
|
||||
# Get commitments via row IDs
|
||||
commitments = [row_commitments[row_id] for row_id in row_ids]
|
||||
|
||||
commitments_bytes = [row_commitments_bytes[row_id] for row_id in row_ids]
|
||||
|
||||
# Get objects from bytes
|
||||
commitments = [bytes_to_kzg_commitment(commitment_bytes) for commitment_bytes in commitments_bytes]
|
||||
cells = [bytes_to_cell(cell_bytes) for cell_bytes in cells_bytes]
|
||||
proofs = [bytes_to_kzg_proof(proof_bytes) for proof_bytes in proofs_bytes]
|
||||
|
||||
return all(
|
||||
verify_kzg_proof_multi_impl(commitment, coset_for_cell(column_id), cell, proof)
|
||||
for commitment, column_id, cell, proof in zip(commitments, column_ids, cells, proofs)
|
||||
|
@ -447,7 +474,8 @@ def verify_cell_proof_batch(row_commitments: Sequence[KZGCommitment],
|
|||
### `recover_polynomial`
|
||||
|
||||
```python
|
||||
def recover_polynomial(cell_ids: Sequence[CellID], cells: Sequence[Cell]) -> Polynomial:
|
||||
def recover_polynomial(cell_ids: Sequence[CellID],
|
||||
cells_bytes: Sequence[Vector[Bytes32, FIELD_ELEMENTS_PER_CELL]]) -> Polynomial:
|
||||
"""
|
||||
Recovers a polynomial from 2 * FIELD_ELEMENTS_PER_CELL evaluations, half of which can be missing.
|
||||
|
||||
|
@ -457,7 +485,10 @@ def recover_polynomial(cell_ids: Sequence[CellID], cells: Sequence[Cell]) -> Pol
|
|||
|
||||
Public method.
|
||||
"""
|
||||
assert len(cell_ids) == len(cells)
|
||||
assert len(cell_ids) == len(cells_bytes)
|
||||
|
||||
cells = [bytes_to_cell(cell_bytes) for cell_bytes in cells_bytes]
|
||||
|
||||
assert len(cells) >= CELLS_PER_BLOB // 2
|
||||
missing_cell_ids = [cell_id for cell_id in range(CELLS_PER_BLOB) if cell_id not in cell_ids]
|
||||
roots_of_unity_reduced = compute_roots_of_unity(CELLS_PER_BLOB)
|
||||
|
@ -506,7 +537,7 @@ def recover_polynomial(cell_ids: Sequence[CellID], cells: Sequence[Cell]) -> Pol
|
|||
|
||||
eval_shifted_extended_evaluation = fft_field(shifted_extended_evaluation, roots_of_unity_extended)
|
||||
eval_shifted_zero_poly = fft_field(shifted_zero_poly, roots_of_unity_extended)
|
||||
|
||||
|
||||
eval_shifted_reconstructed_poly = [
|
||||
div(a, b)
|
||||
for a, b in zip(eval_shifted_extended_evaluation, eval_shifted_zero_poly)
|
||||
|
|
|
@ -578,7 +578,7 @@ def verify_blob_kzg_proof_batch(blobs: Sequence[Blob],
|
|||
"""
|
||||
|
||||
assert len(blobs) == len(commitments_bytes) == len(proofs_bytes)
|
||||
|
||||
|
||||
commitments, evaluation_challenges, ys, proofs = [], [], [], []
|
||||
for blob, commitment_bytes, proof_bytes in zip(blobs, commitments_bytes, proofs_bytes):
|
||||
assert len(blob) == BYTES_PER_BLOB
|
||||
|
|
|
@ -10,6 +10,10 @@ from eth2spec.test.helpers.sharding import (
|
|||
from eth2spec.utils.bls import BLS_MODULUS
|
||||
|
||||
|
||||
def field_element_bytes(x):
|
||||
return int.to_bytes(x % BLS_MODULUS, 32, "big")
|
||||
|
||||
|
||||
@with_eip7594_and_later
|
||||
@spec_test
|
||||
@single_phase
|
||||
|
@ -34,10 +38,13 @@ def test_verify_cell_proof(spec):
|
|||
blob = get_sample_blob(spec)
|
||||
commitment = spec.blob_to_kzg_commitment(blob)
|
||||
cells, proofs = spec.compute_cells_and_proofs(blob)
|
||||
|
||||
cells_bytes = [[field_element_bytes(element) for element in cell] for cell in cells]
|
||||
|
||||
cell_id = 0
|
||||
assert spec.verify_cell_proof(commitment, cell_id, cells[cell_id], proofs[cell_id])
|
||||
assert spec.verify_cell_proof(commitment, cell_id, cells_bytes[cell_id], proofs[cell_id])
|
||||
cell_id = 1
|
||||
assert spec.verify_cell_proof(commitment, cell_id, cells[cell_id], proofs[cell_id])
|
||||
assert spec.verify_cell_proof(commitment, cell_id, cells_bytes[cell_id], proofs[cell_id])
|
||||
|
||||
|
||||
@with_eip7594_and_later
|
||||
|
@ -47,13 +54,16 @@ def test_verify_cell_proof_batch(spec):
|
|||
blob = get_sample_blob(spec)
|
||||
commitment = spec.blob_to_kzg_commitment(blob)
|
||||
cells, proofs = spec.compute_cells_and_proofs(blob)
|
||||
cells_bytes = [[field_element_bytes(element) for element in cell] for cell in cells]
|
||||
|
||||
assert len(cells) == len(proofs)
|
||||
|
||||
assert spec.verify_cell_proof_batch(
|
||||
row_commitments=[commitment],
|
||||
row_ids=[0],
|
||||
column_ids=[0, 1],
|
||||
cells=cells[0:1],
|
||||
proofs=proofs,
|
||||
row_commitments_bytes=[commitment],
|
||||
row_ids=[0, 0],
|
||||
column_ids=[0, 4],
|
||||
cells_bytes=[cells_bytes[0], cells_bytes[4]],
|
||||
proofs_bytes=[proofs[0], proofs[4]],
|
||||
)
|
||||
|
||||
|
||||
|
@ -73,10 +83,10 @@ def test_recover_polynomial(spec):
|
|||
|
||||
# Extend data with Reed-Solomon and split the extended data in cells
|
||||
cells = spec.compute_cells(blob)
|
||||
cells_bytes = [[field_element_bytes(element) for element in cell] for cell in cells]
|
||||
|
||||
# Compute the cells we will be recovering from
|
||||
cell_ids = []
|
||||
known_cells = []
|
||||
# First figure out just the indices of the cells
|
||||
for i in range(N_SAMPLES):
|
||||
j = rng.randint(0, spec.CELLS_PER_BLOB)
|
||||
|
@ -84,10 +94,10 @@ def test_recover_polynomial(spec):
|
|||
j = rng.randint(0, spec.CELLS_PER_BLOB)
|
||||
cell_ids.append(j)
|
||||
# Now the cells themselves
|
||||
known_cells = [cells[cell_id] for cell_id in cell_ids]
|
||||
known_cells_bytes = [cells_bytes[cell_id] for cell_id in cell_ids]
|
||||
|
||||
# Recover the data
|
||||
recovered_data = spec.recover_polynomial(cell_ids, known_cells)
|
||||
recovered_data = spec.recover_polynomial(cell_ids, known_cells_bytes)
|
||||
|
||||
# Check that the original data match the non-extended portion of the recovered data
|
||||
assert original_polynomial == recovered_data[:len(recovered_data) // 2]
|
||||
|
|
Loading…
Reference in New Issue