Rename `KZG_SETUP_LAGRANGE` to `KZG_SETUP_G1_LAGRANGE` and `KZG_SETUP_G2` to `KZG_SETUP_G2_MONOMIAL`
This commit is contained in:
parent
01fa0fe64a
commit
9257ad28ac
4
setup.py
4
setup.py
|
@ -151,8 +151,8 @@ def _parse_value(name: str, typed_value: str, type_hint: Optional[str] = None) -
|
|||
def _update_constant_vars_with_kzg_setups(constant_vars, preset_name):
|
||||
comment = "noqa: E501"
|
||||
kzg_setups = ALL_KZG_SETUPS[preset_name]
|
||||
constant_vars['KZG_SETUP_G2'] = VariableDefinition(constant_vars['KZG_SETUP_G2'].value, str(kzg_setups[0]), comment, None)
|
||||
constant_vars['KZG_SETUP_LAGRANGE'] = VariableDefinition(constant_vars['KZG_SETUP_LAGRANGE'].value, str(kzg_setups[1]), comment, None)
|
||||
constant_vars['KZG_SETUP_G2_MONOMIAL'] = VariableDefinition(constant_vars['KZG_SETUP_G2_MONOMIAL'].value, str(kzg_setups[0]), comment, None)
|
||||
constant_vars['KZG_SETUP_G1_LAGRANGE'] = VariableDefinition(constant_vars['KZG_SETUP_G1_LAGRANGE'].value, str(kzg_setups[1]), comment, None)
|
||||
|
||||
|
||||
def get_spec(file_name: Path, preset: Dict[str, str], config: Dict[str, str], preset_name=str) -> SpecObject:
|
||||
|
|
|
@ -98,8 +98,8 @@ but reusing the `mainnet` settings in public networks is a critical security req
|
|||
| Name | Value |
|
||||
| - | - |
|
||||
| `KZG_SETUP_G2_LENGTH` | `65` |
|
||||
| `KZG_SETUP_G2` | `Vector[G2Point, KZG_SETUP_G2_LENGTH]`, contents TBD |
|
||||
| `KZG_SETUP_LAGRANGE` | `Vector[G1Point, FIELD_ELEMENTS_PER_BLOB]`, contents TBD |
|
||||
| `KZG_SETUP_G2_MONOMIAL` | `Vector[G2Point, KZG_SETUP_G2_LENGTH]`, contents TBD |
|
||||
| `KZG_SETUP_G1_LAGRANGE` | `Vector[G1Point, FIELD_ELEMENTS_PER_BLOB]`, contents TBD |
|
||||
|
||||
## Helper functions
|
||||
|
||||
|
@ -107,7 +107,7 @@ but reusing the `mainnet` settings in public networks is a critical security req
|
|||
|
||||
All polynomials (which are always given in Lagrange form) should be interpreted as being in
|
||||
bit-reversal permutation. In practice, clients can implement this by storing the lists
|
||||
`KZG_SETUP_LAGRANGE` and roots of unity in bit-reversal permutation, so these functions only
|
||||
`KZG_SETUP_G1_LAGRANGE` and roots of unity in bit-reversal permutation, so these functions only
|
||||
have to be called once at startup.
|
||||
|
||||
#### `is_power_of_two`
|
||||
|
@ -351,7 +351,7 @@ def blob_to_kzg_commitment(blob: Blob) -> KZGCommitment:
|
|||
Public method.
|
||||
"""
|
||||
assert len(blob) == BYTES_PER_BLOB
|
||||
return g1_lincomb(bit_reversal_permutation(KZG_SETUP_LAGRANGE), blob_to_polynomial(blob))
|
||||
return g1_lincomb(bit_reversal_permutation(KZG_SETUP_G1_LAGRANGE), blob_to_polynomial(blob))
|
||||
```
|
||||
|
||||
#### `verify_kzg_proof`
|
||||
|
@ -389,7 +389,10 @@ def verify_kzg_proof_impl(commitment: KZGCommitment,
|
|||
Verify KZG proof that ``p(z) == y`` where ``p(z)`` is the polynomial represented by ``polynomial_kzg``.
|
||||
"""
|
||||
# Verify: P - y = Q * (X - z)
|
||||
X_minus_z = bls.add(bls.bytes96_to_G2(KZG_SETUP_G2[1]), bls.multiply(bls.G2(), (BLS_MODULUS - z) % BLS_MODULUS))
|
||||
X_minus_z = bls.add(
|
||||
bls.bytes96_to_G2(KZG_SETUP_G2_MONOMIAL[1]),
|
||||
bls.multiply(bls.G2(), (BLS_MODULUS - z) % BLS_MODULUS),
|
||||
)
|
||||
P_minus_y = bls.add(bls.bytes48_to_G1(commitment), bls.multiply(bls.G1(), (BLS_MODULUS - y) % BLS_MODULUS))
|
||||
return bls.pairing_check([
|
||||
[P_minus_y, bls.neg(bls.G2())],
|
||||
|
@ -439,7 +442,7 @@ def verify_kzg_proof_batch(commitments: Sequence[KZGCommitment],
|
|||
C_minus_y_lincomb = g1_lincomb(C_minus_y_as_KZGCommitments, r_powers)
|
||||
|
||||
return bls.pairing_check([
|
||||
[bls.bytes48_to_G1(proof_lincomb), bls.neg(bls.bytes96_to_G2(KZG_SETUP_G2[1]))],
|
||||
[bls.bytes48_to_G1(proof_lincomb), bls.neg(bls.bytes96_to_G2(KZG_SETUP_G2_MONOMIAL[1]))],
|
||||
[bls.add(bls.bytes48_to_G1(C_minus_y_lincomb), bls.bytes48_to_G1(proof_z_lincomb)), bls.G2()]
|
||||
])
|
||||
```
|
||||
|
@ -515,7 +518,7 @@ def compute_kzg_proof_impl(polynomial: Polynomial, z: BLSFieldElement) -> Tuple[
|
|||
# Compute: q(x_i) = (p(x_i) - p(z)) / (x_i - z).
|
||||
quotient_polynomial[i] = div(a, b)
|
||||
|
||||
return KZGProof(g1_lincomb(bit_reversal_permutation(KZG_SETUP_LAGRANGE), quotient_polynomial)), y
|
||||
return KZGProof(g1_lincomb(bit_reversal_permutation(KZG_SETUP_G1_LAGRANGE), quotient_polynomial)), y
|
||||
```
|
||||
|
||||
#### `compute_blob_kzg_proof`
|
||||
|
|
Loading…
Reference in New Issue