Swapped order of aggregate and verify

This commit is contained in:
vbuterin 2018-12-14 19:55:05 -05:00 committed by GitHub
parent 7b4c4f299d
commit 829911c0fd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 10 additions and 10 deletions

View File

@ -99,6 +99,16 @@ def modular_squareroot(value: int) -> int:
return None return None
``` ```
## Operations involving asignature aggregation
### `bls_aggregate_pubkeys`
Let `bls_aggregate_pubkeys(pubkeys: [uint384]) -> uint384` return `pubkeys[0] + .... + pubkeys[len(pubkeys)-1]`, where `+` is the elliptic curve addition operation over the G1 curve.
### `bls_aggregate_signatures`
Let `bls_aggregate_signatures(signatures: [[uint384]]) -> [uint384]` return `signatures[0] + .... + signatures[len(signatures)-1]`, where `+` is the elliptic curve addition operation over the G2 curve.
## Signature verification ## Signature verification
In the following `e` is the pairing function and `g` is the G1 generator with the following coordinates (see [here](https://github.com/zkcrypto/pairing/tree/master/src/bls12_381#g1)): In the following `e` is the pairing function and `g` is the G1 generator with the following coordinates (see [here](https://github.com/zkcrypto/pairing/tree/master/src/bls12_381#g1)):
@ -117,16 +127,6 @@ Let `bls_verify(pubkey: uint384, message: bytes32, signature: [uint384], domain:
* Verify that `signature` is a valid G2 point. * Verify that `signature` is a valid G2 point.
* Verify that `e(pubkey, hash_to_G2(message, domain)) == e(g, signature)`. * Verify that `e(pubkey, hash_to_G2(message, domain)) == e(g, signature)`.
## Operations involving aggregate signatures
### `bls_aggregate_pubkeys`
Let `bls_aggregate_pubkeys(pubkeys: [uint384]) -> uint384` return `pubkeys[0] + .... + pubkeys[len(pubkeys)-1]`, where `+` is the elliptic curve addition operation over the G1 curve.
### `bls_aggregate_signatures`
Let `bls_aggregate_signatures(signatures: [[uint384]]) -> [uint384]` return `signatures[0] + .... + signatures[len(signatures)-1]`, where `+` is the elliptic curve addition operation over the G2 curve.
### `bls_verify_multiple` ### `bls_verify_multiple`
Let `bls_verify_multiple(pubkeys: [uint384], messages: [bytes32], signature: [uint384], domain: uint64) -> bool`: Let `bls_verify_multiple(pubkeys: [uint384], messages: [bytes32], signature: [uint384], domain: uint64) -> bool`: