Merge branch 'rename_tree_roots' of https://github.com/terenc3t/eth2.0-specs into terenc3t-rename_tree_roots

This commit is contained in:
Danny Ryan 2018-12-11 14:54:30 -06:00
commit 726ed97eb2
No known key found for this signature in database
GPG Key ID: 2765A792E42CE07A
3 changed files with 61 additions and 61 deletions

View File

@ -65,7 +65,7 @@
- [`clamp`](#clamp)
- [`get_new_shuffling`](#get_new_shuffling)
- [`get_shard_committees_at_slot`](#get_shard_committees_at_slot)
- [`get_block_hash`](#get_block_hash)
- [`get_block_root`](#get_block_root)
- [`get_beacon_proposer_index`](#get_beacon_proposer_index)
- [`get_updated_ancestor_hashes`](#get_updated_ancestor_hashes)
- [`get_attestation_participants`](#get_attestation_participants)
@ -74,7 +74,7 @@
- [`get_new_validator_registry_delta_chain_tip`](#get_new_validator_registry_delta_chain_tip)
- [`get_fork_version`](#get_fork_version)
- [`get_domain`](#get_domain)
- [`SSZTreeHash`](#ssztreehash)
- [`hash_tree_root`](#hash_tree_root)
- [`verify_casper_votes`](#verify_casper_votes)
- [`integer_squareroot`](#integer_squareroot)
- [`bls_verify`](#blsverify)
@ -310,18 +310,18 @@ Unless otherwise indicated, code appearing in `this style` is to be interpreted
'slot': 'uint64',
# Shard number
'shard': 'uint64',
# Hash of the signed beacon block
'beacon_block_hash': 'hash32',
# Hash of the ancestor at the epoch boundary
'epoch_boundary_hash': 'hash32',
# Shard block hash being attested to
'shard_block_hash': 'hash32',
# Last crosslink hash
'latest_crosslink_hash': 'hash32',
# Hash of root of the signed beacon block
'beacon_block_root': 'hash32',
# Hash of root of the ancestor at the epoch boundary
'epoch_boundary_root': 'hash32',
# Shard block's hash of root
'shard_block_root': 'hash32',
# Last crosslink's hash of root
'latest_crosslink_root': 'hash32',
# Slot of the last justified beacon block
'justified_slot': 'uint64',
# Hash of the last justified beacon block
'justified_block_hash': 'hash32',
'justified_block_root': 'hash32',
}
```
@ -418,8 +418,8 @@ Unless otherwise indicated, code appearing in `this style` is to be interpreted
'slot': 'uint64',
# Shard number (`BEACON_CHAIN_SHARD_NUMBER` for beacon chain)
'shard': 'uint64',
# Block hash
'block_hash': 'hash32',
# Block's hash of root
'block_root': 'hash32',
}
```
@ -455,7 +455,7 @@ Unless otherwise indicated, code appearing in `this style` is to be interpreted
# Recent state
'latest_crosslinks': [CrosslinkRecord],
'latest_block_hashes': ['hash32'], # Needed to process attestations, older to newer
'latest_block_roots': ['hash32'], # Needed to process attestations, older to newer
'latest_penalized_exit_balances': ['uint64'], # Balances penalized at every withdrawal period
'latest_attestations': [PendingAttestationRecord],
@ -495,7 +495,7 @@ Unless otherwise indicated, code appearing in `this style` is to be interpreted
# Slot number
'slot': 'uint64',
# Shard block hash
'shard_block_hash': 'hash32',
'shard_block_root': 'hash32',
}
```
@ -654,7 +654,7 @@ Processing the beacon chain is similar to processing the Ethereum 1.0 chain. Cli
For a beacon chain block, `block`, to be processed by a node, the following conditions must be met:
* The parent block with `SSZTreeHash` `block.ancestor_hashes[0]` has been processed and accepted.
* The parent block with `hash_tree_root` `block.ancestor_hashes[0]` has been processed and accepted.
* The node has processed its `state` up to slot, `block.slot - 1`.
* The Ethereum 1.0 block pointed to by the `state.processed_pow_receipt_root` has been processed and accepted.
* The node's local clock time is greater than or equal to `state.genesis_time + block.slot * SLOT_DURATION`.
@ -874,20 +874,20 @@ def get_shard_committees_at_slot(state: BeaconState,
return state.shard_committees_at_slots[slot - earliest_slot_in_array]
```
#### `get_block_hash`
#### `get_block_root`
```python
def get_block_hash(state: BeaconState,
def get_block_root(state: BeaconState,
slot: int) -> Hash32:
"""
Returns the block hash at a recent ``slot``.
"""
earliest_slot_in_array = state.slot - len(state.latest_block_hashes)
earliest_slot_in_array = state.slot - len(state.latest_block_roots)
assert earliest_slot_in_array <= slot < state.slot
return state.latest_block_hashes[slot - earliest_slot_in_array]
return state.latest_block_roots[slot - earliest_slot_in_array]
```
`get_block_hash(_, s)` should always return `SSZTreeHash` of the block in the beacon chain at slot `s`, and `get_shard_committees_at_slot(_, s)` should not change unless the [validator](#dfn-validator) registry changes.
`get_block_root(_, s)` should always return `hash_tree_root` of the block in the beacon chain at slot `s`, and `get_shard_committees_at_slot(_, s)` should not change unless the [validator](#dfn-validator) registry changes.
#### `get_beacon_proposer_index`
@ -905,11 +905,11 @@ def get_beacon_proposer_index(state: BeaconState,
```python
def get_updated_ancestor_hashes(latest_block: BeaconBlock,
latest_hash: Hash32) -> List[Hash32]:
latest_root: Hash32) -> List[Hash32]:
new_ancestor_hashes = copy.deepcopy(latest_block.ancestor_hashes)
for i in range(32):
if latest_block.slot % 2**i == 0:
new_ancestor_hashes[i] = latest_hash
new_ancestor_hashes[i] = latest_root
return new_ancestor_hashes
```
@ -992,9 +992,9 @@ def get_domain(fork_data: ForkData,
) * 2**32 + domain_type
```
#### `SSZTreeHash`
#### `hash_tree_root`
`SSZTreeHash` is a function for hashing objects into a single root utilizing a hash tree structure. `SSZTreeHash` is defined in the [SimpleSerialize spec](https://github.com/ethereum/eth2.0-specs/blob/master/specs/simple-serialize.md#tree-hash).
`hash_tree_root` is a function for hashing objects into a single root utilizing a hash tree structure. `hash_tree_root` is defined in the [SimpleSerialize spec](https://github.com/ethereum/eth2.0-specs/blob/master/specs/simple-serialize.md#tree-hash).
#### `verify_casper_votes`
@ -1005,7 +1005,7 @@ def verify_casper_votes(state: BeaconState, votes: SlashableVoteData) -> bool:
pubs = [aggregate_pubkey([state.validators[i].pubkey for i in votes.aggregate_signature_poc_0_indices]),
aggregate_pubkey([state.validators[i].pubkey for i in votes.aggregate_signature_poc_1_indices])]
return bls_verify_multiple(pubkeys=pubs, msgs=[SSZTreeHash(votes)+bytes1(0), SSZTreeHash(votes)+bytes1(1), sig=aggregate_signature)
return bls_verify_multiple(pubkeys=pubs, msgs=[hash_tree_root(votes)+bytes1(0), hash_tree_root(votes)+bytes1(1), sig=aggregate_signature)
```
#### `integer_squareroot`
@ -1087,8 +1087,8 @@ def on_startup(initial_validator_deposits: List[Deposit],
finalized_slot=INITIAL_SLOT_NUMBER,
# Recent state
latest_crosslinks=[CrosslinkRecord(slot=INITIAL_SLOT_NUMBER, shard_block_hash=ZERO_HASH) for _ in range(SHARD_COUNT)],
latest_block_hashes=[ZERO_HASH for _ in range(EPOCH_LENGTH * 2)],
latest_crosslinks=[CrosslinkRecord(slot=INITIAL_SLOT_NUMBER, shard_block_root=ZERO_HASH) for _ in range(SHARD_COUNT)],
latest_block_roots=[ZERO_HASH for _ in range(EPOCH_LENGTH * 2)],
latest_penalized_exit_balances=[],
latest_attestations=[],
@ -1297,15 +1297,15 @@ def exit_validator(state: BeaconState,
Below are the processing steps that happen at every slot.
* Let `latest_block` be the latest `BeaconBlock` that was processed in the chain.
* Let `latest_hash` be the `SSZTreeHash` of `latest_block`.
* Let `latest_root` be the `hash_tree_root` of `latest_block`.
* Set `state.slot += 1`
* Set `state.latest_block_hashes = state.latest_block_hashes + [latest_hash]`. (The output of `get_block_hash` should not change, except that it will no longer throw for `state.slot - 1`).
* Set `state.latest_block_roots = state.latest_block_roots + [latest_root]`. (The output of `get_block_root` should not change, except that it will no longer throw for `state.slot - 1`).
If there is a block from the proposer for `state.slot`, we process that incoming block:
* Let `block` be that associated incoming block.
* Verify that `block.slot == state.slot`
* Verify that `block.ancestor_hashes` equals `get_updated_ancestor_hashes(latest_block, latest_hash)`.
* Verify that `block.ancestor_hashes` equals `get_updated_ancestor_hashes(latest_block, latest_root)`.
If there is no block from the proposer at state.slot:
@ -1314,9 +1314,9 @@ If there is no block from the proposer at state.slot:
### Proposer signature
* Let `block_hash_without_sig` be the `SSZTreeHash` of `block` where `block.signature` is set to `[0, 0]`.
* Let `proposal_hash = SSZTreeHash(ProposalSignedData(state.slot, BEACON_CHAIN_SHARD_NUMBER, block_hash_without_sig))`.
* Verify that `bls_verify(pubkey=state.validator_registry[get_beacon_proposer_index(state, state.slot)].pubkey, data=proposal_hash, sig=block.signature, domain=get_domain(state.fork_data, state.slot, DOMAIN_PROPOSAL))`.
* Let `block_root_without_sig` be the `hash_tree_root` of `block` where `block.signature` is set to `[0, 0]`.
* Let `proposal_root = hash_tree_root(ProposalSignedData(state.slot, BEACON_CHAIN_SHARD_NUMBER, block_root_without_sig))`.
* Verify that `bls_verify(pubkey=state.validator_registry[get_beacon_proposer_index(state, state.slot)].pubkey, data=proposal_root, sig=block.signature, domain=get_domain(state.fork_data, state.slot, DOMAIN_PROPOSAL))`.
### RANDAO
@ -1341,11 +1341,11 @@ Verify that `len(block.body.proposer_slashings) <= MAX_PROPOSER_SLASHINGS`.
For each `proposer_slashing` in `block.body.proposer_slashings`:
* Let `proposer = state.validator_registry[proposer_slashing.proposer_index]`.
* Verify that `bls_verify(pubkey=proposer.pubkey, msg=SSZTreeHash(proposer_slashing.proposal_data_1), sig=proposer_slashing.proposal_signature_1, domain=get_domain(state.fork_data, proposer_slashing.proposal_data_1.slot, DOMAIN_PROPOSAL))`.
* Verify that `bls_verify(pubkey=proposer.pubkey, msg=SSZTreeHash(proposer_slashing.proposal_data_2), sig=proposer_slashing.proposal_signature_2, domain=get_domain(state.fork_data, proposer_slashing.proposal_data_2.slot, DOMAIN_PROPOSAL))`.
* Verify that `bls_verify(pubkey=proposer.pubkey, msg=hash_tree_root(proposer_slashing.proposal_data_1), sig=proposer_slashing.proposal_signature_1, domain=get_domain(state.fork_data, proposer_slashing.proposal_data_1.slot, DOMAIN_PROPOSAL))`.
* Verify that `bls_verify(pubkey=proposer.pubkey, msg=hash_tree_root(proposer_slashing.proposal_data_2), sig=proposer_slashing.proposal_signature_2, domain=get_domain(state.fork_data, proposer_slashing.proposal_data_2.slot, DOMAIN_PROPOSAL))`.
* Verify that `proposer_slashing.proposal_data_1.slot == proposer_slashing.proposal_data_2.slot`.
* Verify that `proposer_slashing.proposal_data_1.shard == proposer_slashing.proposal_data_2.shard`.
* Verify that `proposer_slashing.proposal_data_1.block_hash != proposer_slashing.proposal_data_2.block_hash`.
* Verify that `proposer_slashing.proposal_data_1.block_root != proposer_slashing.proposal_data_2.block_root`.
* Verify that `proposer.status != EXITED_WITH_PENALTY`.
* Run `update_validator_status(state, proposer_slashing.proposer_index, new_status=EXITED_WITH_PENALTY)`.
@ -1373,12 +1373,12 @@ For each `attestation` in `block.body.attestations`:
* Verify that `attestation.data.slot + MIN_ATTESTATION_INCLUSION_DELAY <= state.slot`.
* Verify that `attestation.data.slot + EPOCH_LENGTH >= state.slot`.
* Verify that `attestation.data.justified_slot` is equal to `state.justified_slot if attestation.data.slot >= state.slot - (state.slot % EPOCH_LENGTH) else state.previous_justified_slot`.
* Verify that `attestation.data.justified_block_hash` is equal to `get_block_hash(state, attestation.data.justified_slot)`.
* Verify that either `attestation.data.latest_crosslink_hash` or `attestation.data.shard_block_hash` equals `state.latest_crosslinks[shard].shard_block_hash`.
* Verify that `attestation.data.justified_block_root` is equal to `get_block_root(state, attestation.data.justified_slot)`.
* Verify that either `attestation.data.latest_crosslink_root` or `attestation.data.shard_block_root` equals `state.latest_crosslinks[shard].shard_block_root`.
* `aggregate_signature` verification:
* Let `participants = get_attestation_participants(state, attestation.data, attestation.participation_bitfield)`.
* Let `group_public_key = BLSAddPubkeys([state.validator_registry[v].pubkey for v in participants])`.
* Verify that `bls_verify(pubkey=group_public_key, msg=SSZTreeHash(attestation.data) + bytes1(0), sig=attestation.aggregate_signature, domain=get_domain(state.fork_data, attestation.data.slot, DOMAIN_ATTESTATION))`.
* Verify that `bls_verify(pubkey=group_public_key, msg=hash_tree_root(attestation.data) + bytes1(0), sig=attestation.aggregate_signature, domain=get_domain(state.fork_data, attestation.data.slot, DOMAIN_ATTESTATION))`.
* [TO BE REMOVED IN PHASE 1] Verify that `attestation.data.shard_block_hash == ZERO_HASH`.
* Append `PendingAttestationRecord(data=attestation.data, participation_bitfield=attestation.participation_bitfield, custody_bitfield=attestation.custody_bitfield, slot_included=state.slot)` to `state.latest_attestations`.
@ -1462,7 +1462,7 @@ All [validators](#dfn-validator):
[Validators](#dfn-Validator) justifying the epoch boundary block at the start of the current epoch:
* Let `this_epoch_attestations = [a for a in state.latest_attestations if state.slot - EPOCH_LENGTH <= a.data.slot < state.slot]`. (Note: this is the set of attestations of slots in the epoch `state.slot-EPOCH_LENGTH...state.slot-1`, _not_ attestations that got included in the chain during the epoch `state.slot-EPOCH_LENGTH...state.slot-1`.)
* Let `this_epoch_boundary_attestations = [a for a in this_epoch_attestations if a.data.epoch_boundary_hash == get_block_hash(state, state.slot-EPOCH_LENGTH) and a.justified_slot == state.justified_slot]`.
* Let `this_epoch_boundary_attestations = [a for a in this_epoch_attestations if a.data.epoch_boundary_root == get_block_root(state, state.slot-EPOCH_LENGTH) and a.justified_slot == state.justified_slot]`.
* Let `this_epoch_boundary_attester_indices` be the union of the [validator](#dfn-validator) index sets given by `[get_attestation_participants(state, a.data, a.participation_bitfield) for a in this_epoch_boundary_attestations]`.
* Let `this_epoch_boundary_attesters = [state.validator_registry[i] for indices in this_epoch_boundary_attester_indices for i in indices]`.
* Let `this_epoch_boundary_attesting_balance = sum([get_effective_balance(v) for v in this_epoch_boundary_attesters])`.
@ -1470,16 +1470,16 @@ All [validators](#dfn-validator):
[Validators](#dfn-Validator) justifying the epoch boundary block at the start of the previous epoch:
* Let `previous_epoch_attestations = [a for a in state.latest_attestations if state.slot - 2 * EPOCH_LENGTH <= a.slot < state.slot - EPOCH_LENGTH]`.
* Let `previous_epoch_boundary_attestations = [a for a in this_epoch_attestations + previous_epoch_attestations if a.epoch_boundary_hash == get_block_hash(state, state.slot - 2 * EPOCH_LENGTH) and a.justified_slot == state.previous_justified_slot]`.
* Let `previous_epoch_boundary_attestations = [a for a in this_epoch_attestations + previous_epoch_attestations if a.epoch_boundary_root == justified_block_root(state, state.slot - 2 * EPOCH_LENGTH) and a.justified_slot == state.previous_justified_slot]`.
* Let `previous_epoch_boundary_attester_indices` be the union of the validator index sets given by `[get_attestation_participants(state, a.data, a.participation_bitfield) for a in previous_epoch_boundary_attestations]`.
* Let `previous_epoch_boundary_attesters = [state.validator_registry[i] for indices in previous_epoch_boundary_attester_indices for i in indices]`.
* Let `previous_epoch_boundary_attesting_balance = sum([get_effective_balance(v) for v in previous_epoch_boundary_attesters])`.
For every `shard_committee` in `state.shard_committees_at_slots`:
* Let `attesting_validators(shard_committee, shard_block_hash)` be the union of the [validator](#dfn-validator) index sets given by `[get_attestation_participants(state, a.data, a.participation_bitfield) for a in this_epoch_attestations + previous_epoch_attestations if a.shard == shard_committee.shard and a.shard_block_hash == shard_block_hash]`.
* Let `winning_hash(shard_committee)` be equal to the value of `shard_block_hash` such that `sum([get_effective_balance(v) for v in attesting_validators(shard_committee, shard_block_hash)])` is maximized (ties broken by favoring lower `shard_block_hash` values).
* Let `attesting_validators(shard_committee)` be equal to `attesting_validators(shard_committee, winning_hash(shard_committee))` for convenience.
* Let `attesting_validators(shard_committee, shard_block_root)` be the union of the [validator](#dfn-validator) index sets given by `[get_attestation_participants(state, a.data, a.participation_bitfield) for a in this_epoch_attestations + previous_epoch_attestations if a.shard == shard_committee.shard and a.shard_block_root == shard_block_root]`.
* Let `winning_root(shard_committee)` be equal to the value of `shard_block_root` such that `sum([get_effective_balance(v) for v in attesting_validators(shard_committee, shard_block_root)])` is maximized (ties broken by favoring lower `shard_block_root` values).
* Let `attesting_validators(shard_committee)` be equal to `attesting_validators(shard_committee, winning_root(shard_committee))` for convenience.
* Let `total_attesting_balance(shard_committee)` be the sum of the balances-at-stake of `attesting_validators(shard_committee)`.
* Let `total_balance(shard_committee) = sum([get_effective_balance(v) for v in shard_committee.committee])`.
* Let `inclusion_slot(v) = a.slot_included` for the attestation `a` where `v` is in `get_attestation_participants(state, a.data, a.participation_bitfield)`.
@ -1521,7 +1521,7 @@ Set `state.finalized_slot = state.previous_justified_slot` if any of the followi
For every `shard_committee` in `state.shard_committees_at_slots`:
* Set `state.latest_crosslinks[shard] = CrosslinkRecord(slot=state.slot, shard_block_hash=winning_hash(shard_committee))` if `3 * total_attesting_balance(shard_committee) >= 2 * total_balance(shard_committee)`.
* Set `state.latest_crosslinks[shard] = CrosslinkRecord(slot=state.slot, block_root=winning_root(shard_committee))` if `3 * total_attesting_balance(shard_committee) >= 2 * total_balance(shard_committee)`.
### Justification and finalization rewards and penalties
@ -1661,11 +1661,11 @@ while len(state.persistent_committee_reassignments) > 0 and state.persistent_com
### Final updates
* Remove any `attestation` in `state.latest_attestations` such that `attestation.data.slot < state.slot - EPOCH_LENGTH`.
* Set `state.latest_block_hashes = state.latest_block_hashes[EPOCH_LENGTH:]`.
* Set `state.latest_block_roots = state.latest_block_roots[EPOCH_LENGTH:]`.
## State root processing
Verify `block.state_root == SSZTreeHash(state)` if there exists a `block` for the slot being processed.
Verify `block.state_root == hash_tree_root(state)` if there exists a `block` for the slot being processed.
# References

View File

@ -40,8 +40,8 @@ A `ShardBlock` object has the following fields:
'slot': 'uint64',
# What shard is it on
'shard_id': 'uint64',
# Parent block hash
'parent_hash': 'hash32',
# Parent block's hash of root
'parent_root': 'hash32',
# Beacon chain block
'beacon_chain_ref': 'hash32',
# Depth of the Merkle tree
@ -62,16 +62,16 @@ A `ShardBlock` object has the following fields:
For a block on a shard to be processed by a node, the following conditions must be met:
* The `ShardBlock` pointed to by `parent_hash` has already been processed and accepted
* The `ShardBlock` pointed to by `parent_root` has already been processed and accepted
* The signature for the block from the _proposer_ (see below for definition) of that block is included along with the block in the network message object
To validate a block header on shard `shard_id`, compute as follows:
* Verify that `beacon_chain_ref` is the hash of a block in the beacon chain with slot less than or equal to `slot`. Verify that `beacon_chain_ref` is equal to or a descendant of the `beacon_chain_ref` specified in the `ShardBlock` pointed to by `parent_hash`.
* Verify that `beacon_chain_ref` is the hash of a block in the beacon chain with slot less than or equal to `slot`. Verify that `beacon_chain_ref` is equal to or a descendant of the `beacon_chain_ref` specified in the `ShardBlock` pointed to by `parent_root`.
* Let `state` be the state of the beacon chain block referred to by `beacon_chain_ref`. Let `validators` be `[validators[i] for i in state.current_persistent_committees[shard_id]]`.
* Assert `len(attester_bitfield) == ceil_div8(len(validators))`
* Let `proposer_index = hash(state.randao_mix + bytes8(shard_id) + bytes8(slot)) % len(validators)`. Let `msg` be the block but with the `block.signature` set to `[0, 0]`. Verify that `BLSVerify(pub=validators[proposer_index].pubkey, msg=hash(msg), sig=block.signature, domain=get_domain(state, slot, SHARD_PROPOSER_DOMAIN))` passes.
* Generate the `group_public_key` by adding the public keys of all the validators for whom the corresponding position in the bitfield is set to 1. Verify that `BLSVerify(pub=group_public_key, msg=parent_hash, sig=block.aggregate_sig, domain=get_domain(state, slot, SHARD_ATTESTER_DOMAIN))` passes.
* Generate the `group_public_key` by adding the public keys of all the validators for whom the corresponding position in the bitfield is set to 1. Verify that `BLSVerify(pub=group_public_key, msg=parent_root, sig=block.aggregate_sig, domain=get_domain(state, slot, SHARD_ATTESTER_DOMAIN))` passes.
### Block Merklization helper
@ -96,9 +96,9 @@ At network layer, we expect a shard block header to be broadcast along with its
A node should sign a crosslink only if the following conditions hold. **If a node has the capability to perform the required level of verification, it should NOT follow chains on which a crosslink for which these conditions do NOT hold has been included, or a sufficient number of signatures have been included that during the next state recalculation, a crosslink will be registered.**
First, the conditions must recursively apply to the crosslink referenced in `last_crosslink_hash` for the same shard (unless `last_crosslink_hash` equals zero, in which case we are at the genesis).
First, the conditions must recursively apply to the crosslink referenced in `last_crosslink_root` for the same shard (unless `last_crosslink_root` equals zero, in which case we are at the genesis).
Second, we verify the `shard_block_combined_data_root`. Let `h` be the slot _immediately after_ the slot of the shard block included by the last crosslink, and `h+n-1` be the slot number of the block directly referenced by the current `shard_block_hash`. Let `B[i]` be the block at slot `h+i` in the shard chain. Let `bodies[0] .... bodies[n-1]` be the bodies of these blocks and `roots[0] ... roots[n-1]` the data roots. If there is a missing slot in the shard chain at position `h+i`, then `bodies[i] == b'\x00' * shard_block_maxbytes(state[i])` and `roots[i]` be the Merkle root of the empty data. Define `compute_merkle_root` be a simple Merkle root calculating function that takes as input a list of objects, where the list's length must be an exact power of two. We define the function for computing the combined data root as follows:
Second, we verify the `shard_block_combined_data_root`. Let `h` be the slot _immediately after_ the slot of the shard block included by the last crosslink, and `h+n-1` be the slot number of the block directly referenced by the current `shard_block_root`. Let `B[i]` be the block at slot `h+i` in the shard chain. Let `bodies[0] .... bodies[n-1]` be the bodies of these blocks and `roots[0] ... roots[n-1]` the data roots. If there is a missing slot in the shard chain at position `h+i`, then `bodies[i] == b'\x00' * shard_block_maxbytes(state[i])` and `roots[i]` be the Merkle root of the empty data. Define `compute_merkle_root` be a simple Merkle root calculating function that takes as input a list of objects, where the list's length must be an exact power of two. We define the function for computing the combined data root as follows:
```python
ZERO_ROOT = merkle_root(bytes([0] * SHARD_BLOCK_SIZE))
@ -121,4 +121,4 @@ Verify that the `shard_block_combined_data_root` is the output of these function
### Shard block fork choice rule
The fork choice rule for any shard is LMD GHOST using the validators currently assigned to that shard, but instead of being rooted in the genesis it is rooted in the block referenced in the most recent accepted crosslink (ie. `state.crosslinks[shard].shard_block_hash`). Only blocks whose `beacon_chain_ref` is the block in the main beacon chain at the specified `slot` should be considered (if the beacon chain skips a slot, then the block at that slot is considered to be the block in the beacon chain at the highest slot lower than a slot).
The fork choice rule for any shard is LMD GHOST using the validators currently assigned to that shard, but instead of being rooted in the genesis it is rooted in the block referenced in the most recent accepted crosslink (ie. `state.crosslinks[shard].shard_block_root`). Only blocks whose `beacon_chain_ref` is the block in the main beacon chain at the specified `slot` should be considered (if the beacon chain skips a slot, then the block at that slot is considered to be the block in the beacon chain at the highest slot lower than a slot).

View File

@ -390,7 +390,7 @@ return typ(**values), item_index
### Tree Hash
The below `SSZTreeHash` algorithm is defined recursively in the case of lists and containers, and it outputs a value equal to or less than 32 bytes in size. For the final output only (ie. not intermediate outputs), if the output is less than 32 bytes, right-zero-pad it to 32 bytes. The goal is collision resistance *within* each type, not between types.
The below `hash_tree_root` algorithm is defined recursively in the case of lists and containers, and it outputs a value equal to or less than 32 bytes in size. For the final output only (ie. not intermediate outputs), if the output is less than 32 bytes, right-zero-pad it to 32 bytes. The goal is collision resistance *within* each type, not between types.
Refer to [Appendix A](https://github.com/ethereum/eth2.0-specs/blob/master/specs/core/0_beacon-chain.md#appendix-a---hash-function) of Phase 0 of the [Eth2.0 specs](https://github.com/ethereum/eth2.0-specs) for a definition of the hash function used below, `hash(x)`.
@ -435,13 +435,13 @@ def merkle_hash(lst):
return hash(chunkz[0] + datalen)
```
To `SSZTreeHash` a list, we simply do:
To `hash_tree_root` a list, we simply do:
```python
return merkle_hash([SSZTreeHash(item) for item in value])
return merkle_hash([hash_tree_root(item) for item in value])
```
Where the inner `SSZTreeHash` is a recursive application of the tree-hashing function (returning less than 32 bytes for short single values).
Where the inner `hash_tree_root` is a recursive application of the tree-hashing function (returning less than 32 bytes for short single values).
#### Container
@ -449,7 +449,7 @@ Where the inner `SSZTreeHash` is a recursive application of the tree-hashing fun
Recursively tree hash the values in the container in order sorted by key, and return the hash of the concatenation of the results.
```python
return hash(b''.join([SSZTreeHash(getattr(x, field)) for field in sorted(value.fields)))
return hash(b''.join([hash_tree_root(getattr(x, field)) for field in sorted(value.fields)))
```