mirror of
https://github.com/status-im/eth2.0-specs.git
synced 2025-01-12 11:44:41 +00:00
Added tree hashing algorithm (#120)
* Added tree hashing algorithm * Update simple-serialize.md * add one more ref to tree_hash * Add the zero-item special case * list_to_glob to handle empty list
This commit is contained in:
parent
86ec833172
commit
707adddc92
@ -383,6 +383,79 @@ assert item_index == start + LENGTH_BYTES + length
|
||||
return typ(**values), item_index
|
||||
```
|
||||
|
||||
### Tree_hash
|
||||
|
||||
The below `tree_hash` algorithm is defined recursively in the case of lists and containers, and it outputs a value equal to or less than 32 bytes in size. For the final output only (ie. not intermediate outputs), if the output is less than 32 bytes, right-zero-pad it to 32 bytes. The goal is collision resistance *within* each type, not between types.
|
||||
|
||||
We define `hash(x)` as `BLAKE2b-512(x)[0:32]`.
|
||||
|
||||
#### uint: 8/16/24/32/64/256, bool, address, hash32
|
||||
|
||||
Return the serialization of the value.
|
||||
|
||||
#### bytes, hash96
|
||||
|
||||
Return the hash of the serialization of the value.
|
||||
|
||||
#### List/Vectors
|
||||
|
||||
First, we define some helpers and then the Merkle tree function. The constant `CHUNK_SIZE` is set to 128.
|
||||
|
||||
```python
|
||||
# Returns the smallest power of 2 equal to or higher than x
|
||||
def next_power_of_2(x):
|
||||
return x if x == 1 else next_power_of_2((x+1) // 2) * 2
|
||||
|
||||
# Extends data length to a power of 2 by minimally right-zero-padding
|
||||
def extend_to_power_of_2(data):
|
||||
return data + b'\x00' * (next_power_of_2(len(data)) - len(data))
|
||||
|
||||
# Concatenate a list of homogeneous objects into data and pad it
|
||||
def list_to_glob(lst):
|
||||
if len(lst) == 0:
|
||||
return b''
|
||||
if len(lst[0]) != next_power_of_2(len(lst[0])):
|
||||
lst = [extend_to_power_of_2(x) for x in lst]
|
||||
data = b''.join(lst)
|
||||
# Pad to chunksize
|
||||
data += b'\x00' * (CHUNKSIZE - (len(data) % CHUNKSIZE or CHUNKSIZE))
|
||||
return data
|
||||
|
||||
# Merkle tree hash of a list of items
|
||||
def merkle_hash(lst):
|
||||
# Turn list into padded data
|
||||
data = list_to_glob(lst)
|
||||
# Store length of list (to compensate for non-bijectiveness of padding)
|
||||
datalen = len(lst).to_bytes(32, 'big')
|
||||
# Convert to chunks
|
||||
chunkz = [data[i:i+CHUNKSIZE] for i in range(0, len(data), CHUNKSIZE)]
|
||||
# Tree-hash
|
||||
while len(chunkz) > 1:
|
||||
if len(chunkz) % 2 == 1:
|
||||
chunkz.append(b'\x00' * CHUNKSIZE)
|
||||
chunkz = [hash(chunkz[i] + chunkz[i+1]) for i in range(0, len(chunkz), 2)]
|
||||
# Return hash of root and length data
|
||||
return hash((chunkz[0] if len(chunks) > 0 else b'\x00' * 32) + datalen)
|
||||
```
|
||||
|
||||
To `tree_hash` a list, we simply do:
|
||||
|
||||
```python
|
||||
return merkle_hash([tree_hash(item) for item in value])
|
||||
```
|
||||
|
||||
Where the inner `tree_hash` is a recursive application of the tree-hashing function (returning less than 32 bytes for short single values).
|
||||
|
||||
|
||||
#### Container
|
||||
|
||||
Recursively tree hash the values in the container in order sorted by key, and return the hash of the concatenation of the results.
|
||||
|
||||
```python
|
||||
return hash(b''.join([tree_hash(getattr(x, field)) for field in sorted(value.fields)))
|
||||
```
|
||||
|
||||
|
||||
## Implementations
|
||||
|
||||
| Language | Implementation | Description |
|
||||
|
Loading…
x
Reference in New Issue
Block a user