Change blob verification fiat-shamir to single blob

This commit is contained in:
Dankrad Feist 2023-01-29 13:05:02 +00:00
parent d89e579089
commit 659c7f513f
No known key found for this signature in database
GPG Key ID: 6815E6A20BEBBABA

View File

@ -25,11 +25,10 @@
- [`bytes_to_kzg_commitment`](#bytes_to_kzg_commitment)
- [`bytes_to_kzg_proof`](#bytes_to_kzg_proof)
- [`blob_to_polynomial`](#blob_to_polynomial)
- [`compute_challenges`](#compute_challenges)
- [`compute_challenge`](#compute_challenge)
- [`bls_modular_inverse`](#bls_modular_inverse)
- [`div`](#div)
- [`g1_lincomb`](#g1_lincomb)
- [`poly_lincomb`](#poly_lincomb)
- [`compute_powers`](#compute_powers)
- [Polynomials](#polynomials)
- [`evaluate_polynomial_in_evaluation_form`](#evaluate_polynomial_in_evaluation_form)
@ -40,11 +39,9 @@
- [`verify_kzg_proof_multi`](#verify_kzg_proof_multi)
- [`compute_kzg_proof`](#compute_kzg_proof)
- [`compute_kzg_proof_impl`](#compute_kzg_proof_impl)
- [`compute_aggregated_poly_and_commitment`](#compute_aggregated_poly_and_commitment)
- [`compute_aggregate_kzg_proof`](#compute_aggregate_kzg_proof)
- [`verify_aggregate_kzg_proof_aggregation`](#verify_aggregate_kzg_proof_aggregation)
- [`verify_aggregate_kzg_proof`](#verify_aggregate_kzg_proof)
- [`verify_aggregate_kzg_proof_multi`](#verify_aggregate_kzg_proof_multi)
- [`compute_blob_kzg_proof`](#compute_blob_kzg_proof)
- [`verify_blob_kzg_proof`](#verify_blob_kzg_proof)
- [`verify_blob_kzg_proof_multi`](#verify_blob_kzg_proof_multi)
<!-- END doctoc generated TOC please keep comment here to allow auto update -->
<!-- /TOC -->
@ -226,44 +223,34 @@ def blob_to_polynomial(blob: Blob) -> Polynomial:
return polynomial
```
#### `compute_challenges`
#### `compute_challenge`
```python
def compute_challenges(polynomials: Sequence[Polynomial],
commitments: Sequence[KZGCommitment]) -> Tuple[Sequence[BLSFieldElement], BLSFieldElement]:
def compute_challenge(polynomial: Polynomial,
commitment: KZGCommitment) -> BLSFieldElement:
"""
Return the Fiat-Shamir challenges required by the rest of the protocol.
The Fiat-Shamir logic works as per the following pseudocode:
hashed_data = hash(DOMAIN_SEPARATOR, polynomials, commitments)
r = hash(hashed_data, 0)
r_powers = [1, r, r**2, r**3, ...]
eval_challenge = hash(hashed_data, 1)
Then return `r_powers` and `eval_challenge` after converting them to BLS field elements.
The resulting field elements are not uniform over the BLS field.
hashed_data = hash(DOMAIN_SEPARATOR, polynomial, commitment)
eval_challenge = hash(hashed_data, 0)
"""
# Append the number of polynomials and the degree of each polynomial as a domain separator
num_polynomials = int.to_bytes(len(polynomials), 8, ENDIANNESS)
num_polynomials = int.to_bytes(1, 8, ENDIANNESS)
degree_poly = int.to_bytes(FIELD_ELEMENTS_PER_BLOB, 8, ENDIANNESS)
data = FIAT_SHAMIR_PROTOCOL_DOMAIN + degree_poly + num_polynomials
# Append each polynomial which is composed by field elements
for poly in polynomials:
for field_element in poly:
for field_element in polynomial:
data += int.to_bytes(field_element, BYTES_PER_FIELD_ELEMENT, ENDIANNESS)
# Append serialized G1 points
for commitment in commitments:
data += commitment
# Transcript has been prepared: time to create the challenges
hashed_data = hash(data)
r = hash_to_bls_field(hashed_data + b'\x00')
r_powers = compute_powers(r, len(commitments))
eval_challenge = hash_to_bls_field(hashed_data + b'\x01')
return r_powers, eval_challenge
return hash_to_bls_field(hashed_data + b'\x00')
```
#### `bls_modular_inverse`
@ -301,23 +288,6 @@ def g1_lincomb(points: Sequence[KZGCommitment], scalars: Sequence[BLSFieldElemen
return KZGCommitment(bls.G1_to_bytes48(result))
```
#### `poly_lincomb`
```python
def poly_lincomb(polys: Sequence[Polynomial],
scalars: Sequence[BLSFieldElement]) -> Polynomial:
"""
Given a list of ``polynomials``, interpret it as a 2D matrix and compute the linear combination
of each column with `scalars`: return the resulting polynomials.
"""
assert len(polys) == len(scalars)
result = [0] * FIELD_ELEMENTS_PER_BLOB
for v, s in zip(polys, scalars):
for i, x in enumerate(v):
result[i] = (result[i] + int(s) * int(x)) % BLS_MODULUS
return Polynomial([BLSFieldElement(x) for x in result])
```
#### `compute_powers`
```python
@ -496,114 +466,65 @@ def compute_kzg_proof_impl(polynomial: Polynomial, z: BLSFieldElement) -> KZGPro
return KZGProof(g1_lincomb(bit_reversal_permutation(KZG_SETUP_LAGRANGE), quotient_polynomial))
```
#### `compute_aggregated_poly_and_commitment`
#### `compute_blob_kzg_proof`
```python
def compute_aggregated_poly_and_commitment(
blobs: Sequence[Blob],
kzg_commitments: Sequence[KZGCommitment]) -> Tuple[Polynomial, KZGCommitment, BLSFieldElement]:
def compute_blob_kzg_proof(blob: Blob) -> KZGProof:
"""
Return (1) the aggregated polynomial, (2) the aggregated KZG commitment,
and (3) the polynomial evaluation random challenge.
This function should also work with blobs == [] and kzg_commitments == []
"""
assert len(blobs) == len(kzg_commitments)
# Convert blobs to polynomials
polynomials = [blob_to_polynomial(blob) for blob in blobs]
# Generate random linear combination and evaluation challenges
r_powers, evaluation_challenge = compute_challenges(polynomials, kzg_commitments)
# Create aggregated polynomial in evaluation form
aggregated_poly = poly_lincomb(polynomials, r_powers)
# Compute commitment to aggregated polynomial
aggregated_poly_commitment = KZGCommitment(g1_lincomb(kzg_commitments, r_powers))
return aggregated_poly, aggregated_poly_commitment, evaluation_challenge
```
#### `compute_aggregate_kzg_proof`
```python
def compute_aggregate_kzg_proof(blobs: Sequence[Blob]) -> KZGProof:
"""
Given a list of blobs, return the aggregated KZG proof that is used to verify them against their commitments.
Given a blob, return the KZG proof that is used to verify it against the commitment.
Public method.
"""
commitments = [blob_to_kzg_commitment(blob) for blob in blobs]
aggregated_poly, aggregated_poly_commitment, evaluation_challenge = compute_aggregated_poly_and_commitment(
blobs,
commitments
)
return compute_kzg_proof_impl(aggregated_poly, evaluation_challenge)
commitment = blob_to_kzg_commitment(blob)
evaluation_challenge = compute_challenge(blob, commitment)
polynomial = blob_to_polynomial(blob)
return compute_kzg_proof_impl(polynomial, evaluation_challenge)
```
#### `verify_aggregate_kzg_proof_aggregation`
#### `verify_blob_kzg_proof`
```python
def verify_aggregate_kzg_proof_aggregation(blobs: Sequence[Blob],
commitments_bytes: Sequence[Bytes48]) \
-> Tuple[KZGCommitment, BLSFieldElement, BLSFieldElement]:
def verify_blob_kzg_proof(blob: Blob,
commitment_bytes: Bytes48,
proof_bytes: Bytes48) -> bool:
"""
Given a list of blobs and an aggregated KZG proof, verify that they correspond to the provided commitments.
Given a blob and a KZG proof, verify that the blob data corresponds to the provided commitment.
Public method.
"""
commitments = [bytes_to_kzg_commitment(c) for c in commitments_bytes]
commitment = bytes_to_kzg_commitment(commitment_bytes)
aggregated_poly, aggregated_poly_commitment, evaluation_challenge = compute_aggregated_poly_and_commitment(
blobs,
commitments
)
evaluation_challenge = compute_challenge(blob, commitment)
polynomial = blob_to_polynomial(blob)
# Evaluate aggregated polynomial at `evaluation_challenge` (evaluation function checks for div-by-zero)
y = evaluate_polynomial_in_evaluation_form(aggregated_poly, evaluation_challenge)
# Evaluate polynomial at `evaluation_challenge` (evaluation function checks for div-by-zero)
y = evaluate_polynomial_in_evaluation_form(polynomial, evaluation_challenge)
return (aggregated_poly_commitment, evaluation_challenge, y)
# Verify proof
proof = bytes_to_kzg_proof(proof_bytes)
return verify_kzg_proof_impl(commitment, evaluation_challenge, y, proof)
```
#### `verify_aggregate_kzg_proof`
#### `verify_blob_kzg_proof_multi`
```python
def verify_aggregate_kzg_proof(blobs: Sequence[Blob],
def verify_blob_kzg_proof_multi(blobs: Sequence[Blob],
commitments_bytes: Sequence[Bytes48],
aggregated_proof_bytes: Bytes48) -> bool:
proofs_bytes: Sequence[Bytes48]) -> bool:
"""
Given a list of blobs and an aggregated KZG proof, verify that they correspond to the provided commitments.
Public method.
"""
aggregated_poly_commitment, evaluation_challenge, y = \
verify_aggregate_kzg_proof_aggregation(blobs, commitments_bytes)
aggregated_proof = bytes_to_kzg_proof(aggregated_proof_bytes)
return verify_kzg_proof_impl(aggregated_poly_commitment, evaluation_challenge, y, aggregated_proof)
```
#### `verify_aggregate_kzg_proof_multi`
```python
def verify_aggregate_kzg_proof_multi(list_blobs: Sequence[Sequence[Blob]],
list_commitments_bytes: Sequence[Sequence[Bytes48]],
list_aggregated_proof_bytes: Sequence[Bytes48]) -> bool:
"""
Given a list of blobs and an aggregated KZG proof, verify that they correspond to the provided commitments.
Given a list of blobs and blob KZG proofs, verify that they correspond to the provided commitments.
Public method.
"""
aggregated_poly_commitments, evaluation_challenges, ys = [], [], []
for blobs, commitments_bytes in zip(list_blobs, list_commitments_bytes):
aggregated_poly_commitment, evaluation_challenge, y = \
verify_aggregate_kzg_proof_aggregation(blobs, commitments_bytes)
aggregated_poly_commitments.append(aggregated_poly_commitment)
commitments, evaluation_challenges, ys, proofs = [], [], [], []
for blob, commitment_bytes, proof_bytes in zip(blobs, commitments_bytes, proofs_bytes):
commitment = bytes_to_kzg_commitment(commitment_bytes)
commitments.append(commitment)
evaluation_challenge = compute_challenge(blob, commitment)
evaluation_challenges.append(evaluation_challenge)
ys.append(y)
polynomial = blob_to_polynomial(blob)
ys.append(evaluate_polynomial_in_evaluation_form(polynomial, evaluation_challenge))
proofs.append(bytes_to_kzg_proof(proof_bytes))
list_aggregated_proof = [bytes_to_kzg_proof(proof) for proof in list_aggregated_proof_bytes]
return verify_kzg_proof_multi(aggregated_poly_commitments, evaluation_challenges, ys, list_aggregated_proof)
return verify_kzg_proof_multi(commitments, evaluation_challenges, ys, proofs)
```