add BLS_MODULUS to places where we subtract two integers (#3709)

This commit is contained in:
kevaundray 2024-04-22 13:57:52 +01:00 committed by GitHub
parent 858f51617d
commit 5c561722b8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -223,7 +223,7 @@ def divide_polynomialcoeff(a: PolynomialCoeff, b: PolynomialCoeff) -> Polynomial
quot = div(a[apos], b[bpos])
o.insert(0, quot)
for i in range(bpos, -1, -1):
a[diff + i] = (int(a[diff + i]) - int(b[i]) * int(quot)) % BLS_MODULUS
a[diff + i] = (int(a[diff + i]) - int(b[i] + BLS_MODULUS) * int(quot)) % BLS_MODULUS
apos -= 1
diff -= 1
return [x % BLS_MODULUS for x in o]
@ -264,7 +264,7 @@ def interpolate_polynomialcoeff(xs: Sequence[BLSFieldElement], ys: Sequence[BLSF
if j != i:
weight_adjustment = bls_modular_inverse(int(xs[i]) - int(xs[j]))
summand = multiply_polynomialcoeff(
summand, [(- int(weight_adjustment) * int(xs[j])) % BLS_MODULUS, weight_adjustment]
summand, [((BLS_MODULUS - int(weight_adjustment)) * int(xs[j])) % BLS_MODULUS, weight_adjustment]
)
r = add_polynomialcoeff(r, summand)
@ -280,7 +280,7 @@ def vanishing_polynomialcoeff(xs: Sequence[BLSFieldElement]) -> PolynomialCoeff:
"""
p = [1]
for x in xs:
p = multiply_polynomialcoeff(p, [-int(x), 1])
p = multiply_polynomialcoeff(p, [-int(x) + BLS_MODULUS, 1])
return p
```