Small improvements on construct_vanishing_polynomial()
This commit is contained in:
parent
4d01d50437
commit
212c1fe624
|
@ -477,34 +477,40 @@ def verify_cell_proof_batch(row_commitments_bytes: Sequence[Bytes48],
|
|||
### `construct_vanishing_polynomial`
|
||||
|
||||
```python
|
||||
def construct_vanishing_polynomial(cell_ids: Sequence[CellID],
|
||||
cells: Sequence[Cell]) -> Tuple[
|
||||
Sequence[BLSFieldElement],
|
||||
Sequence[BLSFieldElement]]:
|
||||
missing_cell_ids = [cell_id for cell_id in range(CELLS_PER_BLOB) if cell_id not in cell_ids]
|
||||
def construct_vanishing_polynomial(missing_cell_ids: Sequence[CellID]) -> Tuple[
|
||||
Sequence[BLSFieldElement],
|
||||
Sequence[BLSFieldElement]]:
|
||||
"""
|
||||
Given the cells that are missing from the data, compute the polynomial that vanishes at every point that
|
||||
corresponds to a missing field element
|
||||
"""
|
||||
# Get the small domain
|
||||
roots_of_unity_reduced = compute_roots_of_unity(CELLS_PER_BLOB)
|
||||
|
||||
# Compute polynomial that vanishes at all the missing cells (over the small domain)
|
||||
short_zero_poly = vanishing_polynomialcoeff([
|
||||
roots_of_unity_reduced[reverse_bits(cell_id, CELLS_PER_BLOB)]
|
||||
for cell_id in missing_cell_ids
|
||||
roots_of_unity_reduced[reverse_bits(missing_cell_id, CELLS_PER_BLOB)]
|
||||
for missing_cell_id in missing_cell_ids
|
||||
])
|
||||
|
||||
zero_poly_coeff = []
|
||||
for i in short_zero_poly:
|
||||
zero_poly_coeff.append(i)
|
||||
zero_poly_coeff.extend([0] * (FIELD_ELEMENTS_PER_CELL - 1))
|
||||
zero_poly_coeff = zero_poly_coeff + [0] * (2 * FIELD_ELEMENTS_PER_BLOB - len(zero_poly_coeff))
|
||||
# Extend vanishing polynomial to full domain using the closed form of the vanishing polynomial over a coset
|
||||
zero_poly_coeff = [0] * (FIELD_ELEMENTS_PER_BLOB * 2)
|
||||
for (i, coeff) in enumerate(short_zero_poly):
|
||||
zero_poly_coeff[i * FIELD_ELEMENTS_PER_CELL] = coeff
|
||||
|
||||
# Compute evaluations of the extended vanishing polynomial
|
||||
zero_poly_eval = fft_field(zero_poly_coeff,
|
||||
compute_roots_of_unity(2 * FIELD_ELEMENTS_PER_BLOB))
|
||||
zero_poly_eval_brp = bit_reversal_permutation(zero_poly_eval)
|
||||
for cell_id in missing_cell_ids:
|
||||
|
||||
# Sanity check
|
||||
for cell_id in range(CELLS_PER_BLOB):
|
||||
start = cell_id * FIELD_ELEMENTS_PER_CELL
|
||||
end = (cell_id + 1) * FIELD_ELEMENTS_PER_CELL
|
||||
assert zero_poly_eval_brp[start:end] == [0] * FIELD_ELEMENTS_PER_CELL
|
||||
for cell_id in cell_ids:
|
||||
start = cell_id * FIELD_ELEMENTS_PER_CELL
|
||||
end = (cell_id + 1) * FIELD_ELEMENTS_PER_CELL
|
||||
assert all(a != 0 for a in zero_poly_eval_brp[start:end])
|
||||
if cell_id in missing_cell_ids:
|
||||
assert zero_poly_eval_brp[start:end] == [0] * FIELD_ELEMENTS_PER_CELL
|
||||
else: # cell_id in cell_ids
|
||||
assert all(a != 0 for a in zero_poly_eval_brp[start:end])
|
||||
|
||||
return zero_poly_coeff, zero_poly_eval, zero_poly_eval_brp
|
||||
```
|
||||
|
@ -593,12 +599,15 @@ def recover_polynomial(cell_ids: Sequence[CellID],
|
|||
"""
|
||||
assert len(cell_ids) == len(cells_bytes)
|
||||
|
||||
# Get the extended domain
|
||||
roots_of_unity_extended = compute_roots_of_unity(2 * FIELD_ELEMENTS_PER_BLOB)
|
||||
|
||||
# Convert from bytes to cells
|
||||
cells = [bytes_to_cell(cell_bytes) for cell_bytes in cells_bytes]
|
||||
assert len(cells) >= CELLS_PER_BLOB // 2
|
||||
|
||||
roots_of_unity_extended = compute_roots_of_unity(2 * FIELD_ELEMENTS_PER_BLOB)
|
||||
|
||||
zero_poly_coeff, zero_poly_eval, zero_poly_eval_brp = construct_vanishing_polynomial(cell_ids, cells)
|
||||
missing_cell_ids = [cell_id for cell_id in range(CELLS_PER_BLOB) if cell_id not in cell_ids]
|
||||
zero_poly_coeff, zero_poly_eval, zero_poly_eval_brp = construct_vanishing_polynomial(missing_cell_ids)
|
||||
|
||||
eval_shifted_extended_evaluation, eval_shifted_zero_poly, shift_inv = \
|
||||
recover_shifted_data(cell_ids, cells, zero_poly_eval, zero_poly_coeff, roots_of_unity_extended)
|
||||
|
|
Loading…
Reference in New Issue