Simplified merkle multiproofs

This commit is contained in:
vbuterin 2019-08-01 18:11:30 -04:00 committed by GitHub
parent 725bdf8223
commit 1b852adef1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -157,11 +157,32 @@ def get_generalized_index_length(index: GeneralizedIndex) -> int:
#### `get_generalized_index_bit`
```python
def get_generalized_index_bit(index: GeneralizedIndex, bit: int) -> bool:
def get_generalized_index_bit(index: GeneralizedIndex, position: int) -> bool:
"""
Returns the i'th bit of a generalized index.
Returns the given bit of a generalized index.
"""
return (index & (1 << bit)) > 0
return (index & (1 << position)) > 0
```
#### `generalized_index_sibling`
```python
def generalized_index_sibling(index: GeneralizedIndex) -> GeneralizedIndex:
return index ^ 1
```
#### `generalized_index_child`
```python
def generalized_index_child(index: GeneralizedIndex, right_side: bool) -> GeneralizedIndex:
return index * 2 + right_side
```
#### `generalized_index_parent`
```python
def generalized_index_parent(index: GeneralizedIndex) -> GeneralizedIndex:
return index // 2
```
## Merkle multiproofs
@ -180,38 +201,57 @@ x x . . . . x *
First, we provide a method for computing the generalized indices of the auxiliary tree nodes that a proof of a given set of generalized indices will require:
```
def get_branch_indices(tree_index: int) -> List[int]:
def get_branch_indices(tree_index: GeneralizedIndex) -> List[GeneralizedIndex]:
"""
Get the generalized indices of the sister chunks along the path from the chunk with the
given tree index to the root.
"""
o = [tree_index ^ 1]
o = [generalized_index_sibling(tree_index)]
while o[-1] > 1:
o.append((o[-1] // 2) ^ 1)
o.append(generalized_index_sibling(generalized_index_parent(o[-1])))
return o[:-1]
def get_expanded_indices(indices: List[int]) -> List[int]:
def get_helper_indices(indices: List[GeneralizedIndex]) -> List[GeneralizedIndex]:
"""
Get the generalized indices of all chunks in the tree needed to prove the chunks with the given
generalized indices, including the leaves.
Get the generalized indices of all "extra" chunks in the tree needed to prove the chunks with the given
generalized indices. Note that the decreasing order is chosen deliberately to ensure equivalence to the
order of hashes in a regular single-item Merkle proof in the single-item case.
"""
branches = set()
all_indices = set()
for index in indices:
branches = branches.union(set(get_branch_indices(index) + [index]))
return sorted([x for x in branches if x*2 not in branches or x*2+1 not in branches])[::-1]
all_indices = all_indices.union(set(get_branch_indices(index) + [index]))
return sorted([
x for x in all_indices if not
(generalized_index_child(x, 0) in all_indices and generalized_index_child(x, 1) in all_indices) and not
(x in indices)
])[::-1]
```
Generating a proof that covers paths `p1 ... pn` is simply a matter of taking the chunks in the SSZ hash tree with generalized indices `get_expanded_indices([p1 ... pn])`.
We now provide the bulk of the proving machinery, a function that takes a `{generalized_index: chunk}` map and fills in chunks that can be inferred (inferring the parent by hashing its two children):
Now we provide the Merkle proof verification functions. First, for single item proofs:
```python
def fill(objects: Dict[int, Bytes32]) -> Dict[int, Bytes32]:
"""
Fills in chunks that can be inferred from other chunks. For a set of chunks that constitutes
a valid proof, this includes the root (generalized index 1).
"""
objects = {k: v for k, v in objects.items()}
def verify_merkle_proof(leaf: Hash, proof: Sequence[Hash], index: GeneralizedIndex, root: Hash) -> bool:
assert len(proof) == get_generalized_index_length(index)
for i, h in enumerate(proof):
if get_generalized_index_bit(index, i):
leaf = hash(h + leaf)
else:
leaf = hash(leaf + h)
return leaf == root
```
Now for multi-item proofs:
```python
def verify_merkle_multiproof(leaves: Sequence[Hash], proof: Sequence[Hash], indices: Sequence[GeneralizedIndex], root: Hash) -> bool:
assert len(leaves) == len(indices)
helper_indices = get_helper_indices(indices)
assert len(proof) == len(helper_indices)
objects = {
**{index:node for index, node in zip(indices, leaves)},
**{index:node for index, node in zip(helper_indices, proof)}
}
keys = sorted(objects.keys())[::-1]
pos = 0
while pos < len(keys):
@ -220,55 +260,7 @@ def fill(objects: Dict[int, Bytes32]) -> Dict[int, Bytes32]:
objects[k // 2] = hash(objects[k & -2] + objects[k | 1])
keys.append(k // 2)
pos += 1
# Completeness and consistency check
assert 1 in objects
for k in objects:
if k > 1:
assert objects[k // 2] == hash(objects[k & -2] + objects[k | 1])
return objects
return objects[1] == root
```
## MerklePartial
We define a container that encodes an SSZ partial, and provide the methods for converting it into a `{generalized_index: chunk}` map, for which we provide a method to extract individual values. To determine the hash tree root of an object represented by an SSZ partial, simply check `decode_ssz_partial(partial)[1]`.
### `SSZMerklePartial`
```python
class SSZMerklePartial(Container):
indices: List[uint64, 2**32]
chunks: List[Bytes32, 2**32]
```
### `decode_ssz_partial`
```python
def decode_ssz_partial(encoded: SSZMerklePartial) -> Dict[int, Bytes32]:
"""
Decodes an encoded SSZ partial into a generalized index -> chunk map, and verify hash consistency.
"""
full_indices = get_expanded_indices(encoded.indices)
return fill({k:v for k,v in zip(full_indices, encoded.chunks)})
```
### `extract_value_at_path`
```python
def extract_value_at_path(chunks: Dict[int, Bytes32], typ: Type, path: List[Union[int, str]]) -> Any:
"""
Provides the value of the element in the object represented by the given encoded SSZ partial at
the given path. Returns a KeyError if that path is not covered by this SSZ partial.
"""
root = 1
for p in path:
if p == '__len__':
return deserialize_basic(chunks[root * 2 + 1][:8], uint64)
if issubclass(typ, (List, Bytes)):
assert 0 <= p < deserialize_basic(chunks[root * 2 + 1][:8], uint64)
pos, start, end = get_item_position(typ, p)
root = root * (2 if issubclass(typ, (List, Bytes)) else 1) * next_power_of_two(get_chunk_count(typ)) + pos
typ = get_elem_type(typ, p)
return deserialize_basic(chunks[root][start: end], typ)
```
Here [link TBD] is a python implementation of SSZ partials that represents them as a class that can be read and written to just like the underlying objects, so you can eg. perform state transitions on SSZ partials and compute the resulting root
Note that the single-item proof is a special case of a multi-item proof; a valid single-item proof verifies correctly when put into the multi-item verification function (making the natural trivial changes to input arguments, `index -> [index]` and `leaf -> [leaf]`).