Merge pull request #55 from hwwhww/refactor_sample_code

Refactor the sample code and fix #47
This commit is contained in:
Hsiao-Wei Wang 2018-10-11 11:31:58 +08:00 committed by GitHub
commit 1684a3ffd3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -317,61 +317,107 @@ def get_active_validator_indices(validators):
Now, a function that shuffles this list:
```python
def shuffle(lst, seed):
# entropy is consumed in 3 byte chunks
# rand_max is defined to remove the modulo bias from this entropy source
rand_max = 2**24
assert len(lst) <= rand_max
def shuffle(values: List[Any],
seed: Hash32) -> List[Any]:
"""
Returns the shuffled ``values`` with seed as entropy.
"""
values_count = len(values)
o = [x for x in lst]
# entropy is consumed in 3 byte chunks
# sample_max is defined to remove the modulo bias from this entropy source
sample_max = 2 ** 24
assert values_count <= sample_max
output = [x for x in values]
source = seed
i = 0
while i < len(lst):
index = 0
while index < values_count:
# Re-hash the source
source = hash(source)
for pos in range(0, 30, 3):
m = int.from_bytes(source[pos:pos+3], 'big')
remaining = len(lst) - i
if remaining == 0:
for position in range(0, 30, 3): # gets indices 3 bytes at a time
# Select a 3-byte sampled int
sample_from_source = int.from_bytes(source[position:position + 3], 'big')
# `remaining` is the size of remaining indices of this round
remaining = values_count - index
if remaining == 1:
break
rand_max = rand_max - rand_max % remaining
if m < rand_max:
replacement_pos = (m % remaining) + i
o[i], o[replacement_pos] = o[replacement_pos], o[i]
i += 1
return o
# Set a random maximum bound of sample_from_source
sample_max = sample_max - sample_max % remaining
# Select `replacement_position` with the given `sample_from_source` and `remaining`
if sample_from_source < sample_max:
# Use random number to get `replacement_position`, where it's not `index`
replacement_position = (sample_from_source % remaining) + index
# Swap the index-th and replacement_position-th elements
output[index], output[replacement_position] = output[replacement_position], output[index]
index += 1
else:
pass
return output
```
Here's a function that splits a list into `N` pieces:
Here's a function that splits a list into `split_count` pieces:
```python
def split(lst, N):
return [lst[len(lst)*i//N: len(lst)*(i+1)//N] for i in range(N)]
def split(seq: List[Any], split_count: int) -> List[Any]:
"""
Returns the split ``seq`` in ``split_count`` pieces in protocol.
"""
list_length = len(seq)
return [
seq[(list_length * i // split_count): (list_length * (i + 1) // split_count)]
for i in range(split_count)
]
```
Now, our combined helper method:
```python
def get_new_shuffling(seed, validators, crosslinking_start_shard):
def get_new_shuffling(seed: Hash32,
validators: List[ValidatorRecord],
crosslinking_start_shard: int) -> List[List[ShardAndCommittee]]:
active_validators = get_active_validator_indices(validators)
if len(active_validators) >= CYCLE_LENGTH * MIN_COMMITTEE_SIZE:
committees_per_slot = min(len(active_validators) // CYCLE_LENGTH // (MIN_COMMITTEE_SIZE * 2) + 1, SHARD_COUNT // CYCLE_LENGTH)
active_validators_size = len(active_validators)
if active_validators_size >= CYCLE_LENGTH * MIN_COMMITTEE_SIZE:
committees_per_slot = min(active_validators_size // CYCLE_LENGTH // (MIN_COMMITTEE_SIZE * 2) + 1, SHARD_COUNT // CYCLE_LENGTH)
slots_per_committee = 1
else:
committees_per_slot = 1
slots_per_committee = 1
while len(active_validators) * slots_per_committee < CYCLE_LENGTH * MIN_COMMITTEE_SIZE \
while active_validators_size * slots_per_committee < CYCLE_LENGTH * MIN_COMMITTEE_SIZE \
and slots_per_committee < CYCLE_LENGTH:
slots_per_committee *= 2
o = []
for i, slot_indices in enumerate(split(shuffle(active_validators, seed), CYCLE_LENGTH)):
output = []
# Shuffle with seed
shuffled_active_validator_indices = shuffle(active_validators, seed)
# Split the shuffled list into cycle_length pieces
validators_per_slot = split(shuffled_active_validator_indices, CYCLE_LENGTH)
for slot, slot_indices in enumerate(validators_per_slot):
# Split the shuffled list into committees_per_slot pieces
shard_indices = split(slot_indices, committees_per_slot)
shard_start = crosslinking_start_shard + \
i * committees_per_slot // slots_per_committee
o.append([ShardAndCommittee(
shard = (shard_start + j) % SHARD_COUNT,
committee = indices
) for j, indices in enumerate(shard_indices)])
return o
shard_id_start = (
crosslinking_start_shard +
(slot * committees_per_slot // slots_per_committee)
)
shards_and_committees_for_shard_indices = [
ShardAndCommittee(
shard_id=(shard_id_start + j) % SHARD_COUNT,
committee=indices
)
for slot, indices in enumerate(shard_indices)
]
output.append(shards_and_committees_for_shard_indices)
return output
```
Here's a diagram of what's going on:
@ -381,13 +427,16 @@ Here's a diagram of what's going on:
We also define two functions for retrieving data from the state:
```python
def get_shards_and_committees_for_slot(crystallized_state, slot):
earliest_slot_in_array = crystallized_state.last_state_recalculation_slot - CYCLE_LENGTH
def get_shards_and_committees_for_slot(crystallized_state: CrystallizedState,
slot: int) -> List[ShardAndCommittee]:
earliest_slot_in_array = crystallized_state.last_state_recalculation - CYCLE_LENGTH
assert earliest_slot_in_array <= slot < earliest_slot_in_array + CYCLE_LENGTH * 2
return crystallized_state.shard_and_committee_for_slots[slot - earliest_slot_in_array]
def get_block_hash(active_state, curblock, slot):
earliest_slot_in_array = curblock.slot - CYCLE_LENGTH * 2
def get_block_hash(active_state: ActiveState,
current_block: BeaconBlock,
slot: int) -> Hash32:
earliest_slot_in_array = current_block.slot - CYCLE_LENGTH * 2
assert earliest_slot_in_array <= slot < earliest_slot_in_array + CYCLE_LENGTH * 2
return active_state.recent_block_hashes[slot - earliest_slot_in_array]
```
@ -397,7 +446,10 @@ def get_block_hash(active_state, curblock, slot):
We define a function to "add a link" to the validator hash chain, used when a validator is added or removed:
```python
def add_validator_set_change_record(crystallized_state, index, pubkey, flag):
def add_validator_set_change_record(crystallized_state: CrystallizedState,
index: int,
pubkey: int,
flag: int) -> None:
crystallized_state.validator_set_delta_hash_chain = \
hash(crystallized_state.validator_set_delta_hash_chain +
bytes1(flag) + bytes3(index) + bytes32(pubkey))
@ -406,7 +458,7 @@ def add_validator_set_change_record(crystallized_state, index, pubkey, flag):
Finally, we abstractly define `int_sqrt(n)` for use in reward/penalty calculations as the largest integer `k` such that `k**2 <= n`. Here is one possible implementation, though clients are free to use their own including standard libraries for [integer square root](https://en.wikipedia.org/wiki/Integer_square_root) if available and meet the specification.
```python
def int_sqrt(n):
def int_sqrt(n: int) -> int:
x = n
y = (x + 1) // 2
while y < x:
@ -421,23 +473,60 @@ def int_sqrt(n):
Run the following code:
```python
def on_startup(initial_validator_entries):
def on_startup(initial_validator_entries: List[Any]) -> Tuple[CrystallizedState, ActiveState]:
# Induct validators
validators = []
for pubkey, proof_of_possession, withdrawal_shard, withdrawal_address, \
randao_commitment in initial_validator_entries:
add_validator(validators, pubkey, proof_of_possession,
withdrawal_shard, withdrawal_address, randao_commitment)
add_validator(
validators=validators,
pubkey=pubkey,
proof_of_possession=proof_of_possession,
withdrawal_shard=withdrawal_shard,
withdrawal_address=withdrawal_address,
randao_commitment=randao_commitment
)
# Setup crystallized state
cs = CrystallizedState()
x = get_new_shuffling(bytes([0] * 32), validators, 0)
cs.shard_and_committee_for_slots = x + x
cs.dynasty = 1
cs.crosslinks = [CrosslinkRecord(dynasty=0, slot=0, hash=bytes([0] * 32))
for i in range(SHARD_COUNT)]
crosslinks = [
CrosslinkRecord(
dynasty=0,
slot=0,
hash=bytes([0] * 32)
)
for i in range(SHARD_COUNT)
]
crystallized_state = CrystallizedState(
dynasty=1,
dynasty_seed=bytes([0] * 32), # stub
dynasty_start_slot=0,
validators=validators,
crosslinks=crosslinks,
last_state_recalculation_slot=0,
last_finalized_slot=0,
last_justified_slot=0,
justified_streak=0,
shard_and_committee_for_slots=x + x,
deposits_penalized_in_period=[],
validator_set_delta_hash_chain=bytes([0] * 32), # stub
pre_fork_version=0,
post_fork_version=0,
fork_slot_number=0
)
# Setup active state
as = ActiveState()
as.recent_block_hashes = [bytes([0] * 32) for _ in range(CYCLE_LENGTH * 2)]
recent_block_hashes = [
bytes([0] * 32)
for _ in range(CYCLE_LENGTH * 2)
]
active_state = ActiveState(
pending_attestations=[],
pending_specials=[],
recent_block_hashes=recent_block_hashes,
randao_mix=bytes([0] * 32) # stub
)
return crystallized_state, active_state
```
The `CrystallizedState()` and `ActiveState()` constructors should initialize all values to zero bytes, an empty value or an empty array depending on context. The `add_validator` routine is defined below.
@ -447,8 +536,12 @@ The `CrystallizedState()` and `ActiveState()` constructors should initialize all
This routine should be run for every validator that is inducted as part of a log created on the PoW chain [TODO: explain where to check for these logs]. These logs should be processed in the order in which they are emitted by the PoW chain. Define `min_empty_validator(validators)` as a function that returns the lowest validator index `i` such that `validators[i].status == WITHDRAWN`, otherwise `None`.
```python
def add_validator(validators, pubkey, proof_of_possession, withdrawal_shard,
withdrawal_address, randao_commitment):
def add_validator(validators: List[ValidatorRecord],
pubkey: int,
proof_of_possession: bytes,
withdrawal_shard: int,
withdrawal_address: Address,
randao_commitment: Hash32) -> int:
# if following assert fails, validator induction failed
# move on to next validator registration log
assert BLSVerify(pub=pubkey,
@ -479,8 +572,10 @@ This procedure should be carried out every block.
First, set `recent_block_hashes` to the output of the following, where `parent_hash` is the hash of the immediate previous block (ie. must be equal to `ancestor_hashes[0]`):
```python
def get_new_recent_block_hashes(old_block_hashes, parent_slot,
current_slot, parent_hash):
def get_new_recent_block_hashes(old_block_hashes: List[Hash32],
parent_slot: int,
current_slot: int,
parent_hash: Hash32) -> List[Hash32]:
d = current_slot - parent_slot
return old_block_hashes[d:] + [parent_hash] * min(d, len(old_block_hashes))
```
@ -488,7 +583,9 @@ def get_new_recent_block_hashes(old_block_hashes, parent_slot,
The output of `get_block_hash` should not change, except that it will no longer throw for `current_slot - 1`, and will now throw for `current_slot - CYCLE_LENGTH * 2 - 1`. Also, check that the block's `ancestor_hashes` array was correctly updated, using the following algorithm:
```python
def update_ancestor_hashes(parent_ancestor_hashes, parent_slot_number, parent_hash):
def update_ancestor_hashes(parent_ancestor_hashes: List[Hash32],
parent_slot_number: int,
parent_hash: Hash32) -> List[Hash32]:
new_ancestor_hashes = copy.copy(parent_ancestor_hashes)
for i in range(32):
if parent_slot_number % 2**i == 0:
@ -537,7 +634,7 @@ For every `(shard, shard_block_hash)` tuple:
#### Balance recalculations related to FFG rewards
* Let `total_balance` be the total balance of active validators.
* Let `total_balance_in_eth = total_balance // GWEI_PER_ETH.
* Let `total_balance_in_eth = total_balance // GWEI_PER_ETH`.
* Let `reward_quotient = BASE_REWARD_QUOTIENT * int_sqrt(total_balance_in_eth)`. (The per-slot maximum interest rate is `1/reward_quotient`.)
* Let `quadratic_penalty_quotient = SQRT_E_DROP_TIME**2`. (The portion lost by offline validators after `D` slots is about `D*D/2/quadratic_penalty_quotient`.)
* Let `time_since_finality = block.slot - last_finalized_slot`.
@ -598,9 +695,9 @@ A dynasty transition can happen after a state recalculation if all of the follow
Then, run the following algorithm to update the validator set:
```python
def change_validators(validators):
def change_validators(validators: List[ValidatorRecord]) -> None:
# The active validator set
active_validators = get_active_validator_indices(validators, dynasty)
active_validators = get_active_validator_indices(validators)
# The total balance of active validators
total_balance = sum([v.balance for i, v in enumerate(validators) if i in active_validators])
# The maximum total wei that can deposit+withdraw
@ -614,12 +711,22 @@ def change_validators(validators):
if validators[i].status == PENDING_ACTIVATION:
validators[i].status = ACTIVE
total_changed += DEPOSIT_SIZE * GWEI_PER_ETH
add_validator_set_change_record(crystallized_state, i, validators[i].pubkey, ENTRY)
add_validator_set_change_record(
crystallized_state=crystallized_state,
index=i,
pubkey=validators[i].pubkey,
flag=ENTRY
)
if validators[i].status == PENDING_EXIT:
validators[i].status = PENDING_WITHDRAW
validators[i].exit_slot = current_slot
total_changed += validators[i].balance
add_validator_set_change_record(crystallized_state, i, validators[i].pubkey, EXIT)
add_validator_set_change_record(
crystallized_state=crystallized_state,
index=i,
pubkey=validators[i].pubkey,
flag=EXIT
)
if total_changed >= max_allowable_change:
break