Merge pull request #3214 from asn-d6/barycentric_no_assert
EIP4844: Handle barycentric evaluation at roots of unity
This commit is contained in:
commit
04d8f28cf6
|
@ -302,11 +302,13 @@ def evaluate_polynomial_in_evaluation_form(polynomial: Polynomial,
|
|||
assert width == FIELD_ELEMENTS_PER_BLOB
|
||||
inverse_width = bls_modular_inverse(BLSFieldElement(width))
|
||||
|
||||
# Make sure we won't divide by zero during division
|
||||
assert z not in ROOTS_OF_UNITY
|
||||
|
||||
roots_of_unity_brp = bit_reversal_permutation(ROOTS_OF_UNITY)
|
||||
|
||||
# If we are asked to evaluate within the domain, we already know the answer
|
||||
if z in roots_of_unity_brp:
|
||||
eval_index = roots_of_unity_brp.index(z)
|
||||
return BLSFieldElement(polynomial[eval_index])
|
||||
|
||||
result = 0
|
||||
for i in range(width):
|
||||
a = BLSFieldElement(int(polynomial[i]) * int(roots_of_unity_brp[i]) % BLS_MODULUS)
|
||||
|
|
|
@ -1,9 +1,13 @@
|
|||
import random
|
||||
|
||||
from eth2spec.test.context import (
|
||||
spec_state_test,
|
||||
with_eip4844_and_later,
|
||||
)
|
||||
from eth2spec.test.helpers.sharding import (
|
||||
get_sample_blob,
|
||||
get_poly_in_both_forms,
|
||||
eval_poly_in_coeff_form,
|
||||
)
|
||||
|
||||
|
||||
|
@ -18,3 +22,68 @@ def test_verify_kzg_proof(spec, state):
|
|||
|
||||
y = spec.evaluate_polynomial_in_evaluation_form(polynomial, x)
|
||||
assert spec.verify_kzg_proof_impl(commitment, x, y, proof)
|
||||
|
||||
|
||||
@with_eip4844_and_later
|
||||
@spec_state_test
|
||||
def test_barycentric_outside_domain(spec, state):
|
||||
"""
|
||||
Test barycentric formula correctness by using it to evaluate a polynomial at a bunch of points outside its domain
|
||||
(the roots of unity).
|
||||
|
||||
Then make sure that we would get the same result if we evaluated it from coefficient form without using the
|
||||
barycentric formula
|
||||
"""
|
||||
rng = random.Random(5566)
|
||||
poly_coeff, poly_eval = get_poly_in_both_forms(spec)
|
||||
roots_of_unity_brp = spec.bit_reversal_permutation(spec.ROOTS_OF_UNITY)
|
||||
|
||||
assert len(poly_coeff) == len(poly_eval) == len(roots_of_unity_brp)
|
||||
n_samples = 12
|
||||
|
||||
for _ in range(n_samples):
|
||||
# Get a random evaluation point and make sure it's not a root of unity
|
||||
z = rng.randint(0, spec.BLS_MODULUS - 1)
|
||||
while z in roots_of_unity_brp:
|
||||
z = rng.randint(0, spec.BLS_MODULUS - 1)
|
||||
|
||||
# Get p(z) by evaluating poly in coefficient form
|
||||
p_z_coeff = eval_poly_in_coeff_form(spec, poly_coeff, z)
|
||||
|
||||
# Get p(z) by evaluating poly in evaluation form
|
||||
p_z_eval = spec.evaluate_polynomial_in_evaluation_form(poly_eval, z)
|
||||
|
||||
# Both evaluations should agree
|
||||
assert p_z_coeff == p_z_eval
|
||||
|
||||
|
||||
@with_eip4844_and_later
|
||||
@spec_state_test
|
||||
def test_barycentric_within_domain(spec, state):
|
||||
"""
|
||||
Test barycentric formula correctness by using it to evaluate a polynomial at all the points of its domain
|
||||
(the roots of unity).
|
||||
|
||||
Then make sure that we would get the same result if we evaluated it from coefficient form without using the
|
||||
barycentric formula
|
||||
"""
|
||||
poly_coeff, poly_eval = get_poly_in_both_forms(spec)
|
||||
roots_of_unity_brp = spec.bit_reversal_permutation(spec.ROOTS_OF_UNITY)
|
||||
|
||||
assert len(poly_coeff) == len(poly_eval) == len(roots_of_unity_brp)
|
||||
n = len(poly_coeff)
|
||||
|
||||
# Iterate over the entire domain
|
||||
for i in range(n):
|
||||
# Grab a root of unity and use it as the evaluation point
|
||||
z = int(roots_of_unity_brp[i])
|
||||
|
||||
# Get p(z) by evaluating poly in coefficient form
|
||||
p_z_coeff = eval_poly_in_coeff_form(spec, poly_coeff, z)
|
||||
|
||||
# Get p(z) by evaluating poly in evaluation form
|
||||
p_z_eval = spec.evaluate_polynomial_in_evaluation_form(poly_eval, z)
|
||||
|
||||
# The two evaluations should be agree and p(z) should also be the i-th "coefficient" of the polynomial in
|
||||
# evaluation form
|
||||
assert p_z_coeff == p_z_eval == poly_eval[i]
|
||||
|
|
|
@ -66,6 +66,38 @@ def get_sample_blob(spec, rng=None):
|
|||
return spec.Blob(b)
|
||||
|
||||
|
||||
def eval_poly_in_coeff_form(spec, coeffs, x):
|
||||
"""
|
||||
Evaluate a polynomial in coefficient form at 'x' using Horner's rule
|
||||
"""
|
||||
total = 0
|
||||
for a in reversed(coeffs):
|
||||
total = (total * x + a) % spec.BLS_MODULUS
|
||||
return total % spec.BLS_MODULUS
|
||||
|
||||
|
||||
def get_poly_in_both_forms(spec, rng=None):
|
||||
"""
|
||||
Generate and return a random polynomial in both coefficient form and evaluation form
|
||||
"""
|
||||
if rng is None:
|
||||
rng = random.Random(5566)
|
||||
|
||||
roots_of_unity_brp = spec.bit_reversal_permutation(spec.ROOTS_OF_UNITY)
|
||||
|
||||
coeffs = [
|
||||
rng.randint(0, spec.BLS_MODULUS - 1)
|
||||
for _ in range(spec.FIELD_ELEMENTS_PER_BLOB)
|
||||
]
|
||||
|
||||
evals = [
|
||||
eval_poly_in_coeff_form(spec, coeffs, int(z))
|
||||
for z in roots_of_unity_brp
|
||||
]
|
||||
|
||||
return coeffs, evals
|
||||
|
||||
|
||||
def get_sample_opaque_tx(spec, blob_count=1, rng=None):
|
||||
blobs = []
|
||||
blob_kzg_commitments = []
|
||||
|
|
Loading…
Reference in New Issue