2019-03-18 18:51:52 +00:00
|
|
|
from .hash_function import hash
|
|
|
|
|
|
|
|
|
2019-05-12 21:16:17 +00:00
|
|
|
ZERO_BYTES32 = b'\x00' * 32
|
|
|
|
|
|
|
|
zerohashes = [ZERO_BYTES32]
|
2019-03-19 03:39:19 +00:00
|
|
|
for layer in range(1, 32):
|
|
|
|
zerohashes.append(hash(zerohashes[layer - 1] + zerohashes[layer - 1]))
|
|
|
|
|
2019-03-18 18:51:52 +00:00
|
|
|
|
|
|
|
# Compute a Merkle root of a right-zerobyte-padded 2**32 sized tree
|
|
|
|
def calc_merkle_tree_from_leaves(values):
|
|
|
|
values = list(values)
|
|
|
|
tree = [values[::]]
|
|
|
|
for h in range(32):
|
|
|
|
if len(values) % 2 == 1:
|
|
|
|
values.append(zerohashes[h])
|
2019-03-19 03:39:19 +00:00
|
|
|
values = [hash(values[i] + values[i + 1]) for i in range(0, len(values), 2)]
|
2019-03-18 18:51:52 +00:00
|
|
|
tree.append(values[::])
|
|
|
|
return tree
|
|
|
|
|
2019-03-19 03:39:19 +00:00
|
|
|
|
2019-03-18 18:51:52 +00:00
|
|
|
def get_merkle_root(values):
|
|
|
|
return calc_merkle_tree_from_leaves(values)[-1][0]
|
|
|
|
|
2019-03-19 03:39:19 +00:00
|
|
|
|
2019-03-18 18:51:52 +00:00
|
|
|
def get_merkle_proof(tree, item_index):
|
|
|
|
proof = []
|
|
|
|
for i in range(32):
|
2019-03-19 03:39:19 +00:00
|
|
|
subindex = (item_index // 2**i) ^ 1
|
2019-03-18 18:51:52 +00:00
|
|
|
proof.append(tree[i][subindex] if subindex < len(tree[i]) else zerohashes[i])
|
|
|
|
return proof
|
2019-05-12 21:16:17 +00:00
|
|
|
|
|
|
|
|
|
|
|
def next_power_of_two(v: int) -> int:
|
|
|
|
"""
|
2019-05-27 21:40:05 +00:00
|
|
|
Get the next power of 2. (for 64 bit range ints).
|
|
|
|
0 is a special case, to have non-empty defaults.
|
2019-05-12 21:16:17 +00:00
|
|
|
Examples:
|
2019-05-27 21:40:05 +00:00
|
|
|
0 -> 1, 1 -> 1, 2 -> 2, 3 -> 4, 32 -> 32, 33 -> 64
|
2019-05-12 21:16:17 +00:00
|
|
|
"""
|
2019-05-27 21:40:05 +00:00
|
|
|
if v == 0:
|
|
|
|
return 1
|
2019-05-12 21:16:17 +00:00
|
|
|
# effectively fill the bitstring (1 less, do not want to with ones, then increment for next power of 2.
|
|
|
|
v -= 1
|
|
|
|
v |= v >> (1 << 0)
|
|
|
|
v |= v >> (1 << 1)
|
|
|
|
v |= v >> (1 << 2)
|
|
|
|
v |= v >> (1 << 3)
|
|
|
|
v |= v >> (1 << 4)
|
|
|
|
v |= v >> (1 << 5)
|
|
|
|
v += 1
|
|
|
|
return v
|
|
|
|
|
|
|
|
|
|
|
|
def merkleize_chunks(chunks):
|
|
|
|
tree = chunks[::]
|
|
|
|
margin = next_power_of_two(len(chunks)) - len(chunks)
|
|
|
|
tree.extend([ZERO_BYTES32] * margin)
|
|
|
|
tree = [ZERO_BYTES32] * len(tree) + tree
|
|
|
|
for i in range(len(tree) // 2 - 1, 0, -1):
|
|
|
|
tree[i] = hash(tree[i * 2] + tree[i * 2 + 1])
|
|
|
|
return tree[1]
|