This document defines the YAML format and structure used for ETH 2.0 testing.
## ToC
* [About](#about)
* [Glossary](#glossary)
* [Test format philosophy](#test-format-philosophy)
* [Test Suite](#yaml-suite)
* [Config](#config)
* [Fork-timeline](#fork-timeline)
* [Config sourcing](#config-sourcing)
* [Test structure](#test-structure)
## About
Ethereum 2.0 uses YAML as the format for all cross client tests. This document describes at a high level the general format to which all test files should conform.
The particular formats of specific types of tests (test suites) are defined in separate documents.
## Glossary
-`generator`: a program that outputs one or more `suite` files.
-`type`: the specialization of one single `generator`.
-`suite`: a YAML file with:
- a header: describes the `suite`, and defines what the `suite` is for
- a list of test cases
-`runner`: where a generator is a "producer", this is the 1-to-1 "consumer". A `runner` focuses on one `type`.
-`handler`: a `runner` may be too limited sometimes, you may have a `suite` with a specific focus that requires a different format.
To facilitate this, you specify a `handler`: the runner can deal with the format by using the specified handler.
Using a `handler` in a `runner` is optional.
-`case`: a test case, an entry in the `test_cases` list of a `suite`. A case can be anything in general,
but its format should be well-defined in the documentation corresponding to the `type` (and `handler`).\
A test has the same exact configuration and fork context as the other entries in the `case` list of its `suite`.
-`forks_timeline`: a fork timeline definition, a YAML file containing a key for each fork-name, and a slot number as value.
## Test format philosophy
### Config design
After long discussion, the following types of configured constants were identified:
- Never changing: genesis data
- Changing, but reliant on old value: e.g. a slot time may change, but if you want to do the conversion
`(genesis data, timestamp) -> slot number` you end up needing both constants.
- Changing, but kept around during fork transition: finalization may take a while,
e.g. an executable has to deal with new deposits and old deposits at the same time. Another example may be economic constants.
- Additional, back-wards compatible: new constants are introduced for later phases
- Changing: there is a very small chance some constant may really be *replaced*.
In this off-chance, it is likely better to include it as an additional variable,
and some clients may simply stop supporting the old one, if they do not want to sync from genesis.
Based on these types of changes, we model the config as a list of key value pairs,
that only grows with every fork (they may change in development versions of forks however, git manages this).
With this approach, configurations are backwards compatible (older clients ignore unknown variables), and easy to maintain.
### Fork config design
There are two types of fork-data:
1) timeline: when does a fork take place?
2) coverage: what forks are covered by a test?
The first is neat to have as a separate form: we prevent duplication, and can run with different presets
(e.g. fork timeline for a minimal local test, for a public testnet, or for main-net)
The second is still somewhat ambiguous: some tests may want cover multiple forks, and can do so in different ways:
- run one test, transitioning from one to the other
- run the same test for both
- run a test for every transition from one fork to the other
- more
There is a common factor here however: the options are exclusive, and give a clear idea on what test suites need to be ran to cover testing for a specific fork.
The way this list of forks is interpreted, is up to the test-runner:
State-transition test suites may want to just declare forks that are being covered in the test suite,
whereas shuffling test suites may want to declare a list of forks to test the shuffling algorithm for individually.
The aim is to provide clients with a well-defined scope of work to run a particular set of test-suites.
- Clients that are complete are expected to contribute to testing, seeking for better resources to get conformance with the spec, and other clients.
- Clients that are not complete in functionality can choose to ignore suites that use certain test-runners, or specific handlers of these test-runners.
- Clients that are on older versions can test there work based on older releases of the generated tests, and catch up with newer releases when possible.
## Test Suite
```
title: <required,string,short,oneline> -- Display name for the test suite
summary: <required,string,average,1-3lines> -- Summarizes the test suite
forks_timeline: <required,string,referencetoaforkdefinitionfile,withoutextension> -- Used to determine the forking timeline
forks: <required,listofstrings> -- Runner decides what to do: run for each fork, or run for all at once, each fork transition, etc.