eth2.0-specs/specs/deneb/p2p-interface.md

402 lines
19 KiB
Markdown
Raw Normal View History

2023-02-08 09:22:28 +10:00
# Deneb -- Networking
2022-03-10 06:31:11 +01:00
2023-02-08 09:22:28 +10:00
This document contains the consensus-layer networking specification for Deneb.
2022-03-10 06:31:11 +01:00
The specification of these changes continues in the same format as the network specifications of previous upgrades, and assumes them as pre-requisite.
## Table of contents
<!-- TOC -->
<!-- START doctoc generated TOC please keep comment here to allow auto update -->
<!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE -->
2023-04-19 19:10:46 +08:00
- [Modifications in Deneb](#modifications-in-deneb)
2023-10-29 02:33:39 +08:00
- [Constant](#constant)
- [Preset](#preset)
2023-04-19 19:10:46 +08:00
- [Configuration](#configuration)
- [Containers](#containers)
- [`BlobSidecar`](#blobsidecar)
- [`BlobIdentifier`](#blobidentifier)
- [Helpers](#helpers)
2023-10-27 12:10:29 +03:00
- [`verify_blob_sidecar_inclusion_proof`](#verify_blob_sidecar_inclusion_proof)
2023-04-19 19:10:46 +08:00
- [The gossip domain: gossipsub](#the-gossip-domain-gossipsub)
- [Topics and messages](#topics-and-messages)
- [Global topics](#global-topics)
- [`beacon_block`](#beacon_block)
2023-06-14 10:51:10 -06:00
- [`beacon_aggregate_and_proof`](#beacon_aggregate_and_proof)
- [Blob subnets](#blob-subnets)
- [`blob_sidecar_{subnet_id}`](#blob_sidecar_subnet_id)
2023-06-14 10:51:10 -06:00
- [Attestation subnets](#attestation-subnets)
2023-06-20 15:50:20 -06:00
- [`beacon_attestation_{subnet_id}`](#beacon_attestation_subnet_id)
2023-04-19 19:10:46 +08:00
- [Transitioning the gossip](#transitioning-the-gossip)
- [The Req/Resp domain](#the-reqresp-domain)
- [Messages](#messages)
- [BeaconBlocksByRange v2](#beaconblocksbyrange-v2)
- [BeaconBlocksByRoot v2](#beaconblocksbyroot-v2)
- [BlobSidecarsByRoot v1](#blobsidecarsbyroot-v1)
- [BlobSidecarsByRange v1](#blobsidecarsbyrange-v1)
2022-03-10 06:31:11 +01:00
- [Design decision rationale](#design-decision-rationale)
- [Why are blobs relayed as a sidecar, separate from beacon blocks?](#why-are-blobs-relayed-as-a-sidecar-separate-from-beacon-blocks)
<!-- END doctoc generated TOC please keep comment here to allow auto update -->
<!-- /TOC -->
2023-04-19 19:10:46 +08:00
## Modifications in Deneb
### Constant
*[New in Deneb:EIP4844]*
### Preset
*[New in Deneb:EIP4844]*
| Name | Value | Description |
|------------------------------------------|-----------------------------------|---------------------------------------------------------------------|
2023-11-02 21:38:01 +07:00
| `KZG_COMMITMENT_INCLUSION_PROOF_DEPTH` | `uint64(floorlog2(get_generalized_index(BeaconBlockBody, 'blob_kzg_commitments')) + 1 + ceillog2(MAX_BLOB_COMMITMENTS_PER_BLOCK))` (= 17) | <!-- predefined --> Merkle proof depth for `blob_kzg_commitments` list item |
2023-04-19 19:10:46 +08:00
### Configuration
2022-03-10 06:31:11 +01:00
*[New in Deneb:EIP4844]*
| Name | Value | Description |
|------------------------------------------|-----------------------------------|---------------------------------------------------------------------|
| `MAX_REQUEST_BLOCKS_DENEB` | `2**7` (= 128) | Maximum number of blocks in a single request |
| `MAX_REQUEST_BLOB_SIDECARS` | `MAX_REQUEST_BLOCKS_DENEB * MAX_BLOBS_PER_BLOCK` | Maximum number of blob sidecars in a single request |
| `MIN_EPOCHS_FOR_BLOB_SIDECARS_REQUESTS` | `2**12` (= 4096 epochs, ~18 days) | The minimum epoch range over which a node must serve blob sidecars |
| `BLOB_SIDECAR_SUBNET_COUNT` | `6` | The number of blob sidecar subnets used in the gossipsub protocol. |
2022-03-10 06:31:11 +01:00
2023-04-19 19:10:46 +08:00
### Containers
2022-03-10 06:31:11 +01:00
2023-04-19 19:10:46 +08:00
#### `BlobSidecar`
2023-06-08 15:05:46 +08:00
*[New in Deneb:EIP4844]*
2023-06-07 17:45:39 +08:00
```python
Free the blobs This PR reintroduces and further decouples blocks and blobs in EIP-4844, so as to improve network and processing performance. Block and blob processing, for the purpose of gossip validation, are independent: they can both be propagated and gossip-validated in parallel - the decoupled design allows 4 important optimizations (or, if you are so inclined, removes 4 unnecessary pessimizations): * Blocks and blobs travel on independent meshes allowing for better parallelization and utilization of high-bandwidth peers * Re-broadcasting after validation can start earlier allowing more efficient use of upload bandwidth - blocks for example can be rebroadcast to peers while blobs are still being downloaded * bandwidth-reduction techniques such as per-peer deduplication are more efficient because of the smaller message size * gossip verification happens independently for blocks and blobs, allowing better sharing / use of CPU and I/O resources in clients With growing block sizes and additional blob data to stream, the network streaming time becomes a dominant factor in propagation times - on a 100mbit line, streaming 1mb to 8 peers takes ~1s - this process is repeated for each hop in both incoming and outgoing directions. This design in particular sends each blob on a separate subnet, thus maximising the potential for parallelisation and providing a natural path for growing the number of blobs per block should the network be judged to be able to handle it. Changes compared to the current design include: * `BlobsSidecar` is split into individual `BlobSidecar` containers - each container is signed individually by the proposer * the signature is used during gossip validation but later dropped. * KZG commitment verification is moved out of the gossip pipeline and instead done before fork choice addition, when both block and sidecars have arrived * clients may verify individual blob commitments earlier * more generally and similar to block verification, gossip propagation is performed solely based on trivial consistency checks and proposer signature verification * by-root blob requests are done per-blob, so as to retain the ability to fill in blobs one-by-one assuming clients generally receive blobs from gossip * by-range blob requests are done per-block, so as to simplify historical sync * range and root requests are limited to `128` entries for both blocks and blobs - practically, the current higher limit of `1024` for blocks does not get used and keeping the limits consistent simplifies implementation - with the merge, block sizes have grown significantly and clients generally fetch smaller chunks.
2023-02-07 10:55:51 +01:00
class BlobSidecar(Container):
index: BlobIndex # Index of blob in block
Free the blobs This PR reintroduces and further decouples blocks and blobs in EIP-4844, so as to improve network and processing performance. Block and blob processing, for the purpose of gossip validation, are independent: they can both be propagated and gossip-validated in parallel - the decoupled design allows 4 important optimizations (or, if you are so inclined, removes 4 unnecessary pessimizations): * Blocks and blobs travel on independent meshes allowing for better parallelization and utilization of high-bandwidth peers * Re-broadcasting after validation can start earlier allowing more efficient use of upload bandwidth - blocks for example can be rebroadcast to peers while blobs are still being downloaded * bandwidth-reduction techniques such as per-peer deduplication are more efficient because of the smaller message size * gossip verification happens independently for blocks and blobs, allowing better sharing / use of CPU and I/O resources in clients With growing block sizes and additional blob data to stream, the network streaming time becomes a dominant factor in propagation times - on a 100mbit line, streaming 1mb to 8 peers takes ~1s - this process is repeated for each hop in both incoming and outgoing directions. This design in particular sends each blob on a separate subnet, thus maximising the potential for parallelisation and providing a natural path for growing the number of blobs per block should the network be judged to be able to handle it. Changes compared to the current design include: * `BlobsSidecar` is split into individual `BlobSidecar` containers - each container is signed individually by the proposer * the signature is used during gossip validation but later dropped. * KZG commitment verification is moved out of the gossip pipeline and instead done before fork choice addition, when both block and sidecars have arrived * clients may verify individual blob commitments earlier * more generally and similar to block verification, gossip propagation is performed solely based on trivial consistency checks and proposer signature verification * by-root blob requests are done per-blob, so as to retain the ability to fill in blobs one-by-one assuming clients generally receive blobs from gossip * by-range blob requests are done per-block, so as to simplify historical sync * range and root requests are limited to `128` entries for both blocks and blobs - practically, the current higher limit of `1024` for blocks does not get used and keeping the limits consistent simplifies implementation - with the merge, block sizes have grown significantly and clients generally fetch smaller chunks.
2023-02-07 10:55:51 +01:00
blob: Blob
kzg_commitment: KZGCommitment
kzg_proof: KZGProof # Allows for quick verification of kzg_commitment
2023-10-27 12:10:29 +03:00
signed_block_header: SignedBeaconBlockHeader
kzg_commitment_inclusion_proof: Vector[Bytes32, KZG_COMMITMENT_INCLUSION_PROOF_DEPTH]
```
2023-04-19 19:10:46 +08:00
#### `BlobIdentifier`
2023-06-08 15:05:46 +08:00
*[New in Deneb:EIP4844]*
2023-06-07 17:45:39 +08:00
```python
class BlobIdentifier(Container):
block_root: Root
index: BlobIndex
```
2023-04-19 19:10:46 +08:00
#### Helpers
2023-03-12 23:05:01 +00:00
2023-10-27 12:10:29 +03:00
##### `verify_blob_sidecar_inclusion_proof`
2023-03-12 23:05:01 +00:00
```python
2023-10-27 12:10:29 +03:00
def verify_blob_sidecar_inclusion_proof(blob_sidecar: BlobSidecar) -> bool:
2023-11-02 22:10:06 +07:00
gindex = get_subtree_index(get_generalized_index(BeaconBlockBody, 'blob_kzg_commitments', blob_sidecar.index))
2023-10-29 03:28:57 +08:00
return is_valid_merkle_branch(
2023-10-27 12:10:29 +03:00
leaf=blob_sidecar.kzg_commitment.hash_tree_root(),
branch=blob_sidecar.kzg_commitment_inclusion_proof,
2023-11-02 21:38:01 +07:00
depth=KZG_COMMITMENT_INCLUSION_PROOF_DEPTH,
2023-11-02 22:10:06 +07:00
index=gindex,
2023-10-27 12:10:29 +03:00
root=blob_sidecar.signed_block_header.message.body_root,
)
2023-03-12 23:05:01 +00:00
```
2023-04-19 19:10:46 +08:00
### The gossip domain: gossipsub
2022-03-10 06:31:11 +01:00
2023-02-08 09:22:28 +10:00
Some gossip meshes are upgraded in the fork of Deneb to support upgraded types.
2022-03-10 06:31:11 +01:00
2023-04-19 19:10:46 +08:00
#### Topics and messages
2022-03-10 06:31:11 +01:00
Topics follow the same specification as in prior upgrades.
2023-06-14 10:51:10 -06:00
The `beacon_block` topic is modified to also support Deneb blocks and new topics are added per table below.
The `voluntary_exit` topic is implicitly modified despite the lock-in use of `CAPELLA_FORK_VERSION` for this message signature validation for EIP-7044.
2023-06-14 10:51:10 -06:00
The `beacon_aggregate_and_proof` and `beacon_attestation_{subnet_id}` topics are modified to support the gossip of attestations created in epoch `N` to be gossiped through the entire range of slots in epoch `N+1` rather than only through one epoch of slots for EIP-7045.
2022-03-10 06:31:11 +01:00
The specification around the creation, validation, and dissemination of messages has not changed from the Capella document unless explicitly noted here.
2022-03-10 06:31:11 +01:00
The derivation of the `message-id` remains stable.
The new topics along with the type of the `data` field of a gossipsub message are given in this table:
| Name | Message Type |
| - | - |
2023-10-27 12:10:29 +03:00
| `blob_sidecar_{subnet_id}` | `BlobSidecar` [New in Deneb:EIP4844] |
2022-03-10 06:31:11 +01:00
2023-04-19 19:10:46 +08:00
##### Global topics
2022-03-10 06:31:11 +01:00
2023-04-19 19:10:46 +08:00
###### `beacon_block`
2023-06-14 10:51:10 -06:00
The *type* of the payload of this topic changes to the (modified) `SignedBeaconBlock` found in Deneb.
*[Modified in Deneb:EIP4844]*
New validation:
- _[REJECT]_ The length of KZG commitments is less than or equal to the limitation defined in Consensus Layer --
i.e. validate that `len(body.signed_beacon_block.message.blob_kzg_commitments) <= MAX_BLOBS_PER_BLOCK`
###### `beacon_aggregate_and_proof`
*[Modified in Deneb:EIP7045]*
The following validation is removed:
* _[IGNORE]_ `aggregate.data.slot` is within the last `ATTESTATION_PROPAGATION_SLOT_RANGE` slots (with a `MAXIMUM_GOSSIP_CLOCK_DISPARITY` allowance) --
i.e. `aggregate.data.slot + ATTESTATION_PROPAGATION_SLOT_RANGE >= current_slot >= aggregate.data.slot`
(a client MAY queue future aggregates for processing at the appropriate slot).
The following validations are added in its place:
* _[IGNORE]_ `aggregate.data.slot` is equal to or earlier than the `current_slot` (with a `MAXIMUM_GOSSIP_CLOCK_DISPARITY` allowance) --
i.e. `aggregate.data.slot <= current_slot`
(a client MAY queue future aggregates for processing at the appropriate slot).
* _[IGNORE]_ the epoch of `aggregate.data.slot` is either the current or previous epoch
(with a `MAXIMUM_GOSSIP_CLOCK_DISPARITY` allowance) --
i.e. `compute_epoch_at_slot(aggregate.data.slot) in (get_previous_epoch(state), get_current_epoch(state))`
##### Blob subnets
###### `blob_sidecar_{subnet_id}`
2022-11-15 10:29:03 -07:00
2023-06-08 15:05:46 +08:00
*[New in Deneb:EIP4844]*
2023-06-07 17:45:39 +08:00
This topic is used to propagate blob sidecars, where each blob index maps to some `subnet_id`.
2022-03-10 06:31:11 +01:00
2023-10-30 10:37:17 +02:00
The following validations MUST pass before forwarding the `blob_sidecar` on the network, assuming the alias `block_header = blob_sidecar.signed_block_header.message`:
2022-03-10 06:31:11 +01:00
2023-10-30 10:37:17 +02:00
- _[REJECT]_ The sidecar's index is consistent with `MAX_BLOBS_PER_BLOCK` -- i.e. `blob_sidecar.index < MAX_BLOBS_PER_BLOCK`.
- _[REJECT]_ The sidecar is for the correct subnet -- i.e. `compute_subnet_for_blob_sidecar(blob_sidecar.index) == subnet_id`.
2023-10-27 12:10:29 +03:00
- _[IGNORE]_ The sidecar is not from a future slot (with a `MAXIMUM_GOSSIP_CLOCK_DISPARITY` allowance) -- i.e. validate that `block_header.slot <= current_slot` (a client MAY queue future sidecars for processing at the appropriate slot).
- _[IGNORE]_ The sidecar is from a slot greater than the latest finalized slot -- i.e. validate that `block_header.slot > compute_start_slot_at_epoch(store.finalized_checkpoint.epoch)`
- _[REJECT]_ The proposer signature of `blob_sidecar.signed_block_header`, is valid with respect to the `block_header.proposer_index` pubkey.
2023-10-27 12:10:29 +03:00
- _[IGNORE]_ The sidecar's block's parent (defined by `block_header.parent_root`) has been seen (via both gossip and non-gossip sources) (a client MAY queue sidecars for processing once the parent block is retrieved).
- _[REJECT]_ The sidecar's block's parent (defined by `block_header.parent_root`) passes validation.
- _[REJECT]_ The sidecar is from a higher slot than the sidecar's block's parent (defined by `block_header.parent_root`).
- _[REJECT]_ The current finalized_checkpoint is an ancestor of the sidecar's block -- i.e. `get_checkpoint_block(store, block_header.parent_root, store.finalized_checkpoint.epoch) == store.finalized_checkpoint.root`.
- _[REJECT]_ The sidecar's inclusion proof is valid as verified by `verify_blob_sidecar_inclusion_proof(blob_sidecar)`.
2023-10-31 11:39:57 +02:00
- _[REJECT]_ The sidecar's blob is valid as verified by `verify_blob_kzg_proof(blob_sidecar.blob, blob_sidecar.kzg_commitment, blob_sidecar.kzg_proof)`.
2024-03-11 12:10:44 -06:00
- _[IGNORE]_ The sidecar is the first sidecar for the tuple `(block_header.slot, block_header.proposer_index, blob_sidecar.index)` with valid header signature, sidecar inclusion proof, and kzg proof.
- _[REJECT]_ The sidecar is proposed by the expected `proposer_index` for the block's slot in the context of the current shuffling (defined by `block_header.parent_root`/`block_header.slot`).
If the `proposer_index` cannot immediately be verified against the expected shuffling, the sidecar MAY be queued for later processing while proposers for the block's branch are calculated -- in such a case _do not_ `REJECT`, instead `IGNORE` this message.
2022-03-10 06:31:11 +01:00
2023-06-14 10:51:10 -06:00
##### Attestation subnets
2023-06-20 15:50:20 -06:00
###### `beacon_attestation_{subnet_id}`
2023-06-14 10:51:10 -06:00
*[Modified in Deneb:EIP7045]*
The following validation is removed:
* _[IGNORE]_ `attestation.data.slot` is within the last `ATTESTATION_PROPAGATION_SLOT_RANGE` slots (with a `MAXIMUM_GOSSIP_CLOCK_DISPARITY` allowance) --
i.e. `attestation.data.slot + ATTESTATION_PROPAGATION_SLOT_RANGE >= current_slot >= attestation.data.slot`
(a client MAY queue future attestations for processing at the appropriate slot).
The following validations are added in its place:
* _[IGNORE]_ `attestation.data.slot` is equal to or earlier than the `current_slot` (with a `MAXIMUM_GOSSIP_CLOCK_DISPARITY` allowance) --
i.e. `attestation.data.slot <= current_slot`
(a client MAY queue future attestation for processing at the appropriate slot).
* _[IGNORE]_ the epoch of `attestation.data.slot` is either the current or previous epoch
(with a `MAXIMUM_GOSSIP_CLOCK_DISPARITY` allowance) --
i.e. `compute_epoch_at_slot(attestation.data.slot) in (get_previous_epoch(state), get_current_epoch(state))`
2022-03-10 06:31:11 +01:00
2023-04-19 19:10:46 +08:00
#### Transitioning the gossip
2022-03-10 06:31:11 +01:00
See gossip transition details found in the [Altair document](../altair/p2p-interface.md#transitioning-the-gossip) for
details on how to handle transitioning gossip topics for this upgrade.
2022-03-10 06:31:11 +01:00
2023-04-19 19:10:46 +08:00
### The Req/Resp domain
2022-03-10 06:31:11 +01:00
2023-04-19 19:10:46 +08:00
#### Messages
2022-03-10 06:31:11 +01:00
2023-04-19 19:10:46 +08:00
##### BeaconBlocksByRange v2
2022-03-10 06:31:11 +01:00
**Protocol ID:** `/eth2/beacon_chain/req/beacon_blocks_by_range/2/`
2023-02-08 09:22:28 +10:00
The Deneb fork-digest is introduced to the `context` enum to specify Deneb beacon block type.
2022-03-10 06:31:11 +01:00
Per `context = compute_fork_digest(fork_version, genesis_validators_root)`:
[0]: # (eth2spec: skip)
| `fork_version` | Chunk SSZ type |
|--------------------------|-------------------------------|
| `GENESIS_FORK_VERSION` | `phase0.SignedBeaconBlock` |
| `ALTAIR_FORK_VERSION` | `altair.SignedBeaconBlock` |
| `BELLATRIX_FORK_VERSION` | `bellatrix.SignedBeaconBlock` |
2022-11-08 09:06:38 -05:00
| `CAPELLA_FORK_VERSION` | `capella.SignedBeaconBlock` |
| `DENEB_FORK_VERSION` | `deneb.SignedBeaconBlock` |
2022-03-10 06:31:11 +01:00
No more than `MAX_REQUEST_BLOCKS_DENEB` may be requested at a time.
Free the blobs This PR reintroduces and further decouples blocks and blobs in EIP-4844, so as to improve network and processing performance. Block and blob processing, for the purpose of gossip validation, are independent: they can both be propagated and gossip-validated in parallel - the decoupled design allows 4 important optimizations (or, if you are so inclined, removes 4 unnecessary pessimizations): * Blocks and blobs travel on independent meshes allowing for better parallelization and utilization of high-bandwidth peers * Re-broadcasting after validation can start earlier allowing more efficient use of upload bandwidth - blocks for example can be rebroadcast to peers while blobs are still being downloaded * bandwidth-reduction techniques such as per-peer deduplication are more efficient because of the smaller message size * gossip verification happens independently for blocks and blobs, allowing better sharing / use of CPU and I/O resources in clients With growing block sizes and additional blob data to stream, the network streaming time becomes a dominant factor in propagation times - on a 100mbit line, streaming 1mb to 8 peers takes ~1s - this process is repeated for each hop in both incoming and outgoing directions. This design in particular sends each blob on a separate subnet, thus maximising the potential for parallelisation and providing a natural path for growing the number of blobs per block should the network be judged to be able to handle it. Changes compared to the current design include: * `BlobsSidecar` is split into individual `BlobSidecar` containers - each container is signed individually by the proposer * the signature is used during gossip validation but later dropped. * KZG commitment verification is moved out of the gossip pipeline and instead done before fork choice addition, when both block and sidecars have arrived * clients may verify individual blob commitments earlier * more generally and similar to block verification, gossip propagation is performed solely based on trivial consistency checks and proposer signature verification * by-root blob requests are done per-blob, so as to retain the ability to fill in blobs one-by-one assuming clients generally receive blobs from gossip * by-range blob requests are done per-block, so as to simplify historical sync * range and root requests are limited to `128` entries for both blocks and blobs - practically, the current higher limit of `1024` for blocks does not get used and keeping the limits consistent simplifies implementation - with the merge, block sizes have grown significantly and clients generally fetch smaller chunks.
2023-02-07 10:55:51 +01:00
2023-04-19 19:10:46 +08:00
##### BeaconBlocksByRoot v2
2022-03-10 06:31:11 +01:00
**Protocol ID:** `/eth2/beacon_chain/req/beacon_blocks_by_root/2/`
Per `context = compute_fork_digest(fork_version, genesis_validators_root)`:
[1]: # (eth2spec: skip)
2022-12-13 10:07:37 -06:00
| `fork_version` | Chunk SSZ type |
|--------------------------|-------------------------------|
| `GENESIS_FORK_VERSION` | `phase0.SignedBeaconBlock` |
| `ALTAIR_FORK_VERSION` | `altair.SignedBeaconBlock` |
2022-03-10 06:31:11 +01:00
| `BELLATRIX_FORK_VERSION` | `bellatrix.SignedBeaconBlock` |
2022-11-08 09:06:38 -05:00
| `CAPELLA_FORK_VERSION` | `capella.SignedBeaconBlock` |
| `DENEB_FORK_VERSION` | `deneb.SignedBeaconBlock` |
2022-03-10 06:31:11 +01:00
No more than `MAX_REQUEST_BLOCKS_DENEB` may be requested at a time.
2022-03-10 06:31:11 +01:00
*[Modified in Deneb:EIP4844]*
Clients SHOULD include a block in the response as soon as it passes the gossip validation rules.
2023-12-04 07:47:12 -07:00
Clients SHOULD NOT respond with blocks that fail the beacon chain state transition.
2023-04-19 19:10:46 +08:00
##### BlobSidecarsByRoot v1
Free the blobs This PR reintroduces and further decouples blocks and blobs in EIP-4844, so as to improve network and processing performance. Block and blob processing, for the purpose of gossip validation, are independent: they can both be propagated and gossip-validated in parallel - the decoupled design allows 4 important optimizations (or, if you are so inclined, removes 4 unnecessary pessimizations): * Blocks and blobs travel on independent meshes allowing for better parallelization and utilization of high-bandwidth peers * Re-broadcasting after validation can start earlier allowing more efficient use of upload bandwidth - blocks for example can be rebroadcast to peers while blobs are still being downloaded * bandwidth-reduction techniques such as per-peer deduplication are more efficient because of the smaller message size * gossip verification happens independently for blocks and blobs, allowing better sharing / use of CPU and I/O resources in clients With growing block sizes and additional blob data to stream, the network streaming time becomes a dominant factor in propagation times - on a 100mbit line, streaming 1mb to 8 peers takes ~1s - this process is repeated for each hop in both incoming and outgoing directions. This design in particular sends each blob on a separate subnet, thus maximising the potential for parallelisation and providing a natural path for growing the number of blobs per block should the network be judged to be able to handle it. Changes compared to the current design include: * `BlobsSidecar` is split into individual `BlobSidecar` containers - each container is signed individually by the proposer * the signature is used during gossip validation but later dropped. * KZG commitment verification is moved out of the gossip pipeline and instead done before fork choice addition, when both block and sidecars have arrived * clients may verify individual blob commitments earlier * more generally and similar to block verification, gossip propagation is performed solely based on trivial consistency checks and proposer signature verification * by-root blob requests are done per-blob, so as to retain the ability to fill in blobs one-by-one assuming clients generally receive blobs from gossip * by-range blob requests are done per-block, so as to simplify historical sync * range and root requests are limited to `128` entries for both blocks and blobs - practically, the current higher limit of `1024` for blocks does not get used and keeping the limits consistent simplifies implementation - with the merge, block sizes have grown significantly and clients generally fetch smaller chunks.
2023-02-07 10:55:51 +01:00
**Protocol ID:** `/eth2/beacon_chain/req/blob_sidecars_by_root/1/`
2023-06-08 15:05:46 +08:00
*[New in Deneb:EIP4844]*
The `<context-bytes>` field is calculated as `context = compute_fork_digest(fork_version, genesis_validators_root)`:
[1]: # (eth2spec: skip)
| `fork_version` | Chunk SSZ type |
|--------------------------|-------------------------------|
| `DENEB_FORK_VERSION` | `deneb.BlobSidecar` |
Request Content:
```
(
List[BlobIdentifier, MAX_REQUEST_BLOB_SIDECARS]
)
```
Response Content:
```
(
List[BlobSidecar, MAX_REQUEST_BLOB_SIDECARS]
)
```
Free the blobs This PR reintroduces and further decouples blocks and blobs in EIP-4844, so as to improve network and processing performance. Block and blob processing, for the purpose of gossip validation, are independent: they can both be propagated and gossip-validated in parallel - the decoupled design allows 4 important optimizations (or, if you are so inclined, removes 4 unnecessary pessimizations): * Blocks and blobs travel on independent meshes allowing for better parallelization and utilization of high-bandwidth peers * Re-broadcasting after validation can start earlier allowing more efficient use of upload bandwidth - blocks for example can be rebroadcast to peers while blobs are still being downloaded * bandwidth-reduction techniques such as per-peer deduplication are more efficient because of the smaller message size * gossip verification happens independently for blocks and blobs, allowing better sharing / use of CPU and I/O resources in clients With growing block sizes and additional blob data to stream, the network streaming time becomes a dominant factor in propagation times - on a 100mbit line, streaming 1mb to 8 peers takes ~1s - this process is repeated for each hop in both incoming and outgoing directions. This design in particular sends each blob on a separate subnet, thus maximising the potential for parallelisation and providing a natural path for growing the number of blobs per block should the network be judged to be able to handle it. Changes compared to the current design include: * `BlobsSidecar` is split into individual `BlobSidecar` containers - each container is signed individually by the proposer * the signature is used during gossip validation but later dropped. * KZG commitment verification is moved out of the gossip pipeline and instead done before fork choice addition, when both block and sidecars have arrived * clients may verify individual blob commitments earlier * more generally and similar to block verification, gossip propagation is performed solely based on trivial consistency checks and proposer signature verification * by-root blob requests are done per-blob, so as to retain the ability to fill in blobs one-by-one assuming clients generally receive blobs from gossip * by-range blob requests are done per-block, so as to simplify historical sync * range and root requests are limited to `128` entries for both blocks and blobs - practically, the current higher limit of `1024` for blocks does not get used and keeping the limits consistent simplifies implementation - with the merge, block sizes have grown significantly and clients generally fetch smaller chunks.
2023-02-07 10:55:51 +01:00
Requests sidecars by block root and index.
The response is a list of `BlobSidecar` whose length is less than or equal to the number of requests.
It may be less in the case that the responding peer is missing blocks or sidecars.
2023-11-02 10:03:56 -06:00
Before consuming the next response chunk, the response reader SHOULD verify the blob sidecar is well-formatted, has valid inclusion proof, and is correct w.r.t. the expected KZG commitments through `verify_blob_kzg_proof`.
No more than `MAX_REQUEST_BLOB_SIDECARS` may be requested at a time.
`BlobSidecarsByRoot` is primarily used to recover recent blobs (e.g. when receiving a block with a transaction whose corresponding blob is missing).
The response MUST consist of zero or more `response_chunk`.
Free the blobs This PR reintroduces and further decouples blocks and blobs in EIP-4844, so as to improve network and processing performance. Block and blob processing, for the purpose of gossip validation, are independent: they can both be propagated and gossip-validated in parallel - the decoupled design allows 4 important optimizations (or, if you are so inclined, removes 4 unnecessary pessimizations): * Blocks and blobs travel on independent meshes allowing for better parallelization and utilization of high-bandwidth peers * Re-broadcasting after validation can start earlier allowing more efficient use of upload bandwidth - blocks for example can be rebroadcast to peers while blobs are still being downloaded * bandwidth-reduction techniques such as per-peer deduplication are more efficient because of the smaller message size * gossip verification happens independently for blocks and blobs, allowing better sharing / use of CPU and I/O resources in clients With growing block sizes and additional blob data to stream, the network streaming time becomes a dominant factor in propagation times - on a 100mbit line, streaming 1mb to 8 peers takes ~1s - this process is repeated for each hop in both incoming and outgoing directions. This design in particular sends each blob on a separate subnet, thus maximising the potential for parallelisation and providing a natural path for growing the number of blobs per block should the network be judged to be able to handle it. Changes compared to the current design include: * `BlobsSidecar` is split into individual `BlobSidecar` containers - each container is signed individually by the proposer * the signature is used during gossip validation but later dropped. * KZG commitment verification is moved out of the gossip pipeline and instead done before fork choice addition, when both block and sidecars have arrived * clients may verify individual blob commitments earlier * more generally and similar to block verification, gossip propagation is performed solely based on trivial consistency checks and proposer signature verification * by-root blob requests are done per-blob, so as to retain the ability to fill in blobs one-by-one assuming clients generally receive blobs from gossip * by-range blob requests are done per-block, so as to simplify historical sync * range and root requests are limited to `128` entries for both blocks and blobs - practically, the current higher limit of `1024` for blocks does not get used and keeping the limits consistent simplifies implementation - with the merge, block sizes have grown significantly and clients generally fetch smaller chunks.
2023-02-07 10:55:51 +01:00
Each _successful_ `response_chunk` MUST contain a single `BlobSidecar` payload.
2023-05-17 11:08:33 -07:00
Clients MUST support requesting sidecars since `minimum_request_epoch`, where `minimum_request_epoch = max(finalized_epoch, current_epoch - MIN_EPOCHS_FOR_BLOB_SIDECARS_REQUESTS, DENEB_FORK_EPOCH)`. If any root in the request content references a block earlier than `minimum_request_epoch`, peers MAY respond with error code `3: ResourceUnavailable` or not include the blob sidecar in the response.
Free the blobs This PR reintroduces and further decouples blocks and blobs in EIP-4844, so as to improve network and processing performance. Block and blob processing, for the purpose of gossip validation, are independent: they can both be propagated and gossip-validated in parallel - the decoupled design allows 4 important optimizations (or, if you are so inclined, removes 4 unnecessary pessimizations): * Blocks and blobs travel on independent meshes allowing for better parallelization and utilization of high-bandwidth peers * Re-broadcasting after validation can start earlier allowing more efficient use of upload bandwidth - blocks for example can be rebroadcast to peers while blobs are still being downloaded * bandwidth-reduction techniques such as per-peer deduplication are more efficient because of the smaller message size * gossip verification happens independently for blocks and blobs, allowing better sharing / use of CPU and I/O resources in clients With growing block sizes and additional blob data to stream, the network streaming time becomes a dominant factor in propagation times - on a 100mbit line, streaming 1mb to 8 peers takes ~1s - this process is repeated for each hop in both incoming and outgoing directions. This design in particular sends each blob on a separate subnet, thus maximising the potential for parallelisation and providing a natural path for growing the number of blobs per block should the network be judged to be able to handle it. Changes compared to the current design include: * `BlobsSidecar` is split into individual `BlobSidecar` containers - each container is signed individually by the proposer * the signature is used during gossip validation but later dropped. * KZG commitment verification is moved out of the gossip pipeline and instead done before fork choice addition, when both block and sidecars have arrived * clients may verify individual blob commitments earlier * more generally and similar to block verification, gossip propagation is performed solely based on trivial consistency checks and proposer signature verification * by-root blob requests are done per-blob, so as to retain the ability to fill in blobs one-by-one assuming clients generally receive blobs from gossip * by-range blob requests are done per-block, so as to simplify historical sync * range and root requests are limited to `128` entries for both blocks and blobs - practically, the current higher limit of `1024` for blocks does not get used and keeping the limits consistent simplifies implementation - with the merge, block sizes have grown significantly and clients generally fetch smaller chunks.
2023-02-07 10:55:51 +01:00
Clients MUST respond with at least one sidecar, if they have it.
Clients MAY limit the number of blocks and sidecars in the response.
2022-03-10 06:31:11 +01:00
Clients SHOULD include a sidecar in the response as soon as it passes the gossip validation rules.
Clients SHOULD NOT respond with sidecars related to blocks that fail gossip validation rules.
2023-12-04 07:47:12 -07:00
Clients SHOULD NOT respond with sidecars related to blocks that fail the beacon chain state transition
2023-04-19 19:10:46 +08:00
##### BlobSidecarsByRange v1
2022-03-10 06:31:11 +01:00
Free the blobs This PR reintroduces and further decouples blocks and blobs in EIP-4844, so as to improve network and processing performance. Block and blob processing, for the purpose of gossip validation, are independent: they can both be propagated and gossip-validated in parallel - the decoupled design allows 4 important optimizations (or, if you are so inclined, removes 4 unnecessary pessimizations): * Blocks and blobs travel on independent meshes allowing for better parallelization and utilization of high-bandwidth peers * Re-broadcasting after validation can start earlier allowing more efficient use of upload bandwidth - blocks for example can be rebroadcast to peers while blobs are still being downloaded * bandwidth-reduction techniques such as per-peer deduplication are more efficient because of the smaller message size * gossip verification happens independently for blocks and blobs, allowing better sharing / use of CPU and I/O resources in clients With growing block sizes and additional blob data to stream, the network streaming time becomes a dominant factor in propagation times - on a 100mbit line, streaming 1mb to 8 peers takes ~1s - this process is repeated for each hop in both incoming and outgoing directions. This design in particular sends each blob on a separate subnet, thus maximising the potential for parallelisation and providing a natural path for growing the number of blobs per block should the network be judged to be able to handle it. Changes compared to the current design include: * `BlobsSidecar` is split into individual `BlobSidecar` containers - each container is signed individually by the proposer * the signature is used during gossip validation but later dropped. * KZG commitment verification is moved out of the gossip pipeline and instead done before fork choice addition, when both block and sidecars have arrived * clients may verify individual blob commitments earlier * more generally and similar to block verification, gossip propagation is performed solely based on trivial consistency checks and proposer signature verification * by-root blob requests are done per-blob, so as to retain the ability to fill in blobs one-by-one assuming clients generally receive blobs from gossip * by-range blob requests are done per-block, so as to simplify historical sync * range and root requests are limited to `128` entries for both blocks and blobs - practically, the current higher limit of `1024` for blocks does not get used and keeping the limits consistent simplifies implementation - with the merge, block sizes have grown significantly and clients generally fetch smaller chunks.
2023-02-07 10:55:51 +01:00
**Protocol ID:** `/eth2/beacon_chain/req/blob_sidecars_by_range/1/`
2022-03-10 06:31:11 +01:00
2023-06-08 15:05:46 +08:00
*[New in Deneb:EIP4844]*
2022-03-10 06:31:11 +01:00
The `<context-bytes>` field is calculated as `context = compute_fork_digest(fork_version, genesis_validators_root)`:
[1]: # (eth2spec: skip)
| `fork_version` | Chunk SSZ type |
|--------------------------|-------------------------------|
| `DENEB_FORK_VERSION` | `deneb.BlobSidecar` |
2022-03-10 06:31:11 +01:00
Request Content:
```
(
start_slot: Slot
count: uint64
)
```
Response Content:
```
(
List[BlobSidecar, MAX_REQUEST_BLOB_SIDECARS]
2022-03-10 06:31:11 +01:00
)
```
Requests blob sidecars in the slot range `[start_slot, start_slot + count)`, leading up to the current head block as selected by fork choice.
2022-03-10 06:31:11 +01:00
2023-11-02 10:03:56 -06:00
Before consuming the next response chunk, the response reader SHOULD verify the blob sidecar is well-formatted, has valid inclusion proof, and is correct w.r.t. the expected KZG commitments through `verify_blob_kzg_proof`.
2022-03-10 06:31:11 +01:00
2023-02-17 11:59:56 -07:00
`BlobSidecarsByRange` is primarily used to sync blobs that may have been missed on gossip and to sync within the `MIN_EPOCHS_FOR_BLOB_SIDECARS_REQUESTS` window.
2022-03-10 06:31:11 +01:00
The request MUST be encoded as an SSZ-container.
The response MUST consist of zero or more `response_chunk`.
Each _successful_ `response_chunk` MUST contain a single `BlobSidecar` payload.
2022-03-10 06:31:11 +01:00
Let `blob_serve_range` be `[max(current_epoch - MIN_EPOCHS_FOR_BLOB_SIDECARS_REQUESTS, DENEB_FORK_EPOCH), current_epoch]`.
Clients MUST keep a record of blob sidecars seen on the epoch range `blob_serve_range`
2022-03-10 06:31:11 +01:00
where `current_epoch` is defined by the current wall-clock time,
2023-01-19 21:26:21 +01:00
and clients MUST support serving requests of blobs on this range.
2022-03-10 06:31:11 +01:00
Peers that are unable to reply to blob sidecar requests within the
range `blob_serve_range` SHOULD respond with error code `3: ResourceUnavailable`.
2022-03-10 06:31:11 +01:00
Such peers that are unable to successfully reply to this range of requests MAY get descored
or disconnected at any time.
*Note*: The above requirement implies that nodes that start from a recent weak subjectivity checkpoint
MUST backfill the local blobs database to at least the range `blob_serve_range`
2023-02-17 11:59:56 -07:00
to be fully compliant with `BlobSidecarsByRange` requests.
2022-03-10 06:31:11 +01:00
*Note*: Although clients that bootstrap from a weak subjectivity checkpoint can begin
participating in the networking immediately, other peers MAY
disconnect and/or temporarily ban such an un-synced or semi-synced client.
Clients MUST respond with at least the blob sidecars of the first blob-carrying block that exists in the range, if they have it, and no more than `MAX_REQUEST_BLOB_SIDECARS` sidecars.
2022-03-10 06:31:11 +01:00
Clients MUST include all blob sidecars of each block from which they include blob sidecars.
2022-03-10 06:31:11 +01:00
The following blob sidecars, where they exist, MUST be sent in consecutive `(slot, index)` order.
2022-03-10 06:31:11 +01:00
Slots that do not contain known blobs MUST be skipped, mimicking the behaviour
of the `BlocksByRange` request. Only response chunks with known blobs should
therefore be sent.
2023-01-10 10:28:19 -08:00
Clients MAY limit the number of blob sidecars in the response.
2022-03-10 06:31:11 +01:00
The response MUST contain no more than `count * MAX_BLOBS_PER_BLOCK` blob sidecars.
2022-03-10 06:31:11 +01:00
Clients MUST respond with blob sidecars from their view of the current fork choice
-- that is, blob sidecars as included by blocks from the single chain defined by the current head.
2022-03-10 06:31:11 +01:00
Of note, blocks from slots before the finalization MUST lead to the finalized block reported in the `Status` handshake.
Clients MUST respond with blob sidecars that are consistent from a single chain within the context of the request.
2022-03-10 06:31:11 +01:00
After the initial blob sidecar, clients MAY stop in the process of responding if their fork choice changes the view of the chain in the context of the request.
2022-03-10 06:31:11 +01:00
## Design decision rationale
2022-03-10 06:31:11 +01:00
### Why are blobs relayed as a sidecar, separate from beacon blocks?
2022-03-10 06:31:11 +01:00
This "sidecar" design provides forward compatibility for further data increases by black-boxing `is_data_available()`:
with full sharding `is_data_available()` can be replaced by data-availability-sampling (DAS)
thus avoiding all blobs being downloaded by all beacon nodes on the network.
2023-02-16 09:20:40 +01:00
Such sharding design may introduce an updated `BlobSidecar` to identify the shard,
2022-03-10 06:31:11 +01:00
but does not affect the `BeaconBlock` structure.