commit
9e98f6963d
|
@ -1,6 +1,7 @@
|
|||
bitarray==2.6.0
|
||||
dicttoxml==1.7.16
|
||||
matplotlib==3.6.2
|
||||
mplfinance==0.12.9b7
|
||||
networkx==3.0
|
||||
numpy==1.23.5
|
||||
seaborn==0.12.2
|
||||
|
|
|
@ -6,22 +6,28 @@ import matplotlib.pyplot as plt
|
|||
import numpy as np
|
||||
import seaborn as sns
|
||||
from itertools import combinations
|
||||
from mplfinance.original_flavor import candlestick_ohlc
|
||||
import os
|
||||
|
||||
|
||||
class Visualizer:
|
||||
|
||||
def __init__(self, execID):
|
||||
def __init__(self, execID, config):
|
||||
self.execID = execID
|
||||
self.config = config
|
||||
self.folderPath = "results/"+self.execID
|
||||
self.parameters = ['run', 'blockSize', 'failureRate', 'numberNodes', 'netDegree',
|
||||
'chi', 'vpn1', 'vpn2', 'bwUplinkProd', 'bwUplink1', 'bwUplink2']
|
||||
self.parameters = ['run', 'blockSize', 'failureRate', 'numberNodes', 'netDegree', 'chi', 'vpn1', 'vpn2', 'class1ratio', 'bwUplinkProd', 'bwUplink1', 'bwUplink2']
|
||||
self.minimumDataPoints = 2
|
||||
self.maxTTA = 11000
|
||||
|
||||
def plottingData(self):
|
||||
#Store data with a unique key for each params combination
|
||||
"""Store data with a unique key for each params combination"""
|
||||
data = {}
|
||||
#Loop over the xml files in the folder
|
||||
bw = []
|
||||
print("Getting data from the folder...")
|
||||
"""Loop over the xml files in the folder"""
|
||||
for filename in os.listdir(self.folderPath):
|
||||
#Loop over the xmls and store the data in variables
|
||||
"""Loop over the xmls and store the data in variables"""
|
||||
if filename.endswith('.xml'):
|
||||
tree = ET.parse(os.path.join(self.folderPath, filename))
|
||||
root = tree.getroot()
|
||||
|
@ -29,6 +35,7 @@ class Visualizer:
|
|||
blockSize = int(root.find('blockSize').text)
|
||||
failureRate = int(root.find('failureRate').text)
|
||||
numberNodes = int(root.find('numberNodes').text)
|
||||
class1ratio = float(root.find('class1ratio').text)
|
||||
netDegree = int(root.find('netDegree').text)
|
||||
chi = int(root.find('chi').text)
|
||||
vpn1 = int(root.find('vpn1').text)
|
||||
|
@ -38,24 +45,28 @@ class Visualizer:
|
|||
bwUplink2 = int(root.find('bwUplink2').text)
|
||||
tta = float(root.find('tta').text)
|
||||
|
||||
# Loop over all possible combinations of of the parameters minus two
|
||||
"""Store BW"""
|
||||
bw.append(bwUplinkProd)
|
||||
|
||||
"""Loop over all possible combinations of length of the parameters minus x, y params"""
|
||||
for combination in combinations(self.parameters, len(self.parameters)-2):
|
||||
# Get the indices and values of the parameters in the combination
|
||||
|
||||
indices = [self.parameters.index(element) for element in combination]
|
||||
selectedValues = [run, blockSize, failureRate, numberNodes, netDegree, chi, vpn1, vpn2, bwUplinkProd, bwUplink1, bwUplink2]
|
||||
selectedValues = [run, blockSize, failureRate, numberNodes, netDegree, chi, vpn1, vpn2, class1ratio, bwUplinkProd, bwUplink1, bwUplink2]
|
||||
values = [selectedValues[index] for index in indices]
|
||||
names = [self.parameters[i] for i in indices]
|
||||
keyComponents = [f"{name}_{value}" for name, value in zip(names, values)]
|
||||
key = tuple(keyComponents[:len(self.parameters)-2])
|
||||
#Get the names of the other 2 parameters that are not included in the key
|
||||
"""Get the names of the other parameters that are not included in the key"""
|
||||
otherParams = [self.parameters[i] for i in range(len(self.parameters)) if i not in indices]
|
||||
#Append the values of the other 2 parameters and the ttas to the lists for the key
|
||||
"""Append the values of the other parameters and the ttas to the lists for the key"""
|
||||
otherIndices = [i for i in range(len(self.parameters)) if i not in indices]
|
||||
|
||||
#Initialize the dictionary for the key if it doesn't exist yet
|
||||
"""Initialize the dictionary for the key if it doesn't exist yet"""
|
||||
if key not in data:
|
||||
data[key] = {}
|
||||
#Initialize lists for the other 2 parameters and the ttas with the key
|
||||
"""Initialize lists for the other parameters and the ttas with the key"""
|
||||
data[key][otherParams[0]] = []
|
||||
data[key][otherParams[1]] = []
|
||||
data[key]['ttas'] = []
|
||||
|
@ -69,11 +80,76 @@ class Visualizer:
|
|||
else:
|
||||
data[key][otherParams[1]] = [selectedValues[otherIndices[1]]]
|
||||
data[key]['ttas'].append(tta)
|
||||
print("Getting data from the folder...")
|
||||
return data
|
||||
|
||||
def averageRuns(self, data, runs):
|
||||
"""Get the average of all runs for each key"""
|
||||
newData = {}
|
||||
print("Getting the average of the runs...")
|
||||
for key, value in data.items():
|
||||
runExists = False
|
||||
"""Check if the key contains 'run_' with a numerical value"""
|
||||
for item in key:
|
||||
if item.startswith('run_'):
|
||||
runExists = True
|
||||
break
|
||||
if runExists:
|
||||
ps = list(data[key].keys())
|
||||
for item in key:
|
||||
"""Create a new key with the other items in the tuple"""
|
||||
if item.startswith('run_'):
|
||||
newKey = tuple([x for x in key if x != item])
|
||||
"""Average the similar key values"""
|
||||
tta_sums = {}
|
||||
nbRuns = {}
|
||||
ttRuns = []
|
||||
total = []
|
||||
p0 = []
|
||||
p1 = []
|
||||
p2 = []
|
||||
p3 = []
|
||||
for i in range(runs):
|
||||
key0 = (f'run_{i}',) + newKey
|
||||
#Create a dictionary to store the sums of ttas for each unique pair of values in subkeys
|
||||
for i in range(len(data[key0][ps[0]])):
|
||||
keyPair = (data[key0][ps[0]][i], data[key0][ps[1]][i])
|
||||
if data[key0]["ttas"][i] == -1:
|
||||
data[key0]["ttas"][i] = self.maxTTA
|
||||
try:
|
||||
tta_sums[keyPair] += data[key0]['ttas'][i]
|
||||
if data[key0]["ttas"][i] != self.maxTTA:
|
||||
nbRuns[keyPair] += 1
|
||||
except KeyError:
|
||||
tta_sums[keyPair] = data[key0]['ttas'][i]
|
||||
if data[key0]["ttas"][i] != self.maxTTA:
|
||||
nbRuns[keyPair] = 1
|
||||
else:
|
||||
nbRuns[keyPair] = 0
|
||||
for k, tta in tta_sums.items():
|
||||
p0.append(k[0])
|
||||
p1.append(k[1])
|
||||
total.append(tta)
|
||||
for k, run in nbRuns.items():
|
||||
p2.append(k[0])
|
||||
p3.append(k[1])
|
||||
ttRuns.append(run)
|
||||
for i in range(len(total)):
|
||||
if(ttRuns[i] == 0): # All tta = -1
|
||||
total[i] = self.maxTTA
|
||||
elif ttRuns[i] < runs: # Some tta = -1
|
||||
total[i] -= (runs-ttRuns[i]) * self.maxTTA
|
||||
total[i] = total[i]/ttRuns[i]
|
||||
else: # No tta = -1
|
||||
total[i] = total[i]/ttRuns[i]
|
||||
averages = {}
|
||||
averages[ps[0]] = p0
|
||||
averages[ps[1]] = p1
|
||||
averages['ttas'] = total
|
||||
newData[newKey] = averages
|
||||
return newData
|
||||
|
||||
def similarKeys(self, data):
|
||||
#Get the keys for all data with the same x and y labels
|
||||
"""Get the keys for all data with the same x and y labels"""
|
||||
filteredKeys = {}
|
||||
for key1, value1 in data.items():
|
||||
subKeys1 = list(value1.keys())
|
||||
|
@ -89,28 +165,32 @@ class Visualizer:
|
|||
return filteredKeys
|
||||
|
||||
def formatLabel(self, label):
|
||||
#Label formatting for the figures
|
||||
"""Label formatting for the figures"""
|
||||
result = ''.join([f" {char}" if char.isupper() else char for char in label])
|
||||
return result.title()
|
||||
|
||||
def formatTitle(self, key):
|
||||
#Title formatting for the figures
|
||||
"""Title formatting for the figures"""
|
||||
name = ''.join([f" {char}" if char.isupper() else char for char in key.split('_')[0]])
|
||||
number = key.split('_')[1]
|
||||
return f"{name.title()}: {number} "
|
||||
|
||||
def plotHeatmaps(self):
|
||||
#Plot and store the 2D heatmaps in subfolders
|
||||
data = self.plottingData()
|
||||
"""Plot and store the 2D heatmaps in subfolders"""
|
||||
data= self.plottingData()
|
||||
"""Average the runs if needed"""
|
||||
if(len(self.config.runs) > 1):
|
||||
data = self.averageRuns(data, len(self.config.runs))
|
||||
filteredKeys = self.similarKeys(data)
|
||||
vmin, vmax = 0, self.maxTTA+1000
|
||||
print("Plotting heatmaps...")
|
||||
|
||||
#Create the directory if it doesn't exist already
|
||||
"""Create the directory if it doesn't exist already"""
|
||||
heatmapsFolder = self.folderPath + '/heatmaps'
|
||||
if not os.path.exists(heatmapsFolder):
|
||||
os.makedirs(heatmapsFolder)
|
||||
|
||||
#Plot
|
||||
"""Plot"""
|
||||
for labels, keys in filteredKeys.items():
|
||||
for key in keys:
|
||||
xlabels = np.sort(np.unique(data[key][labels[0]]))
|
||||
|
@ -120,20 +200,21 @@ class Visualizer:
|
|||
hist, xedges, yedges = np.histogram2d(data[key][labels[0]], data[key][labels[1]], bins=(len(xlabels), len(ylabels)), weights=data[key]['ttas'])
|
||||
hist = hist.T
|
||||
fig, ax = plt.subplots(figsize=(10, 6))
|
||||
sns.heatmap(hist, xticklabels=xlabels, yticklabels=ylabels, cmap='Purples', cbar_kws={'label': 'Time to block availability (ms)'}, linecolor='black', linewidths=0.3, annot=True, fmt=".2f", ax=ax)
|
||||
sns.heatmap(hist, xticklabels=xlabels, yticklabels=ylabels, cmap='hot_r', cbar_kws={'label': 'Time to block availability (ms)'}, linecolor='black', linewidths=0.3, annot=True, fmt=".2f", ax=ax, vmin=vmin, vmax=vmax)
|
||||
plt.xlabel(self.formatLabel(labels[0]))
|
||||
plt.ylabel(self.formatLabel(labels[1]))
|
||||
filename = ""
|
||||
title = ""
|
||||
paramValueCnt = 0
|
||||
for param in self.parameters:
|
||||
if param != labels[0] and param != labels[1]:
|
||||
if param != labels[0] and param != labels[1] and param != 'run':
|
||||
filename += f"{key[paramValueCnt]}"
|
||||
formattedTitle = self.formatTitle(key[paramValueCnt])
|
||||
title += formattedTitle
|
||||
if (paramValueCnt+1) % 5 == 0:
|
||||
title += "\n"
|
||||
paramValueCnt += 1
|
||||
title = "Time to Block Availability (ms)"
|
||||
title_obj = plt.title(title)
|
||||
font_size = 16 * fig.get_size_inches()[0] / 10
|
||||
title_obj.set_fontsize(font_size)
|
||||
|
@ -144,3 +225,53 @@ class Visualizer:
|
|||
plt.savefig(os.path.join(targetFolder, filename))
|
||||
plt.close()
|
||||
plt.clf()
|
||||
|
||||
def plotHist(self, bandwidth):
|
||||
"""Plot Bandwidth Frequency Histogram"""
|
||||
plt.hist(bandwidth, bins=5)
|
||||
plt.xlabel('Bandwidth')
|
||||
plt.ylabel('Frequency')
|
||||
plt.title('Bandwidth Histogram')
|
||||
|
||||
"""Create the directory if it doesn't exist already"""
|
||||
histogramFolder = self.folderPath + '/histogram'
|
||||
if not os.path.exists(histogramFolder):
|
||||
os.makedirs(histogramFolder)
|
||||
filename = os.path.join(histogramFolder, 'histogram.png')
|
||||
plt.savefig(filename)
|
||||
plt.clf()
|
||||
|
||||
def plotHist(self, bandwidth):
|
||||
"""Plot Bandwidth Frequency Histogram"""
|
||||
plt.hist(bandwidth, bins=5)
|
||||
plt.xlabel('Bandwidth')
|
||||
plt.ylabel('Frequency')
|
||||
plt.title('Bandwidth Histogram')
|
||||
|
||||
"""Create the directory if it doesn't exist already"""
|
||||
histogramFolder = self.folderPath + '/histogram'
|
||||
if not os.path.exists(histogramFolder):
|
||||
os.makedirs(histogramFolder)
|
||||
filename = os.path.join(histogramFolder, 'histogram.png')
|
||||
plt.savefig(filename)
|
||||
plt.clf()
|
||||
|
||||
def plotCandleStick(self, TX_prod, TX_avg, TX_max):
|
||||
#x-axis corresponding to steps
|
||||
steps = range(len(TX_prod))
|
||||
|
||||
#Plot the candlestick chart
|
||||
ohlc = []
|
||||
for i in range(len(TX_prod)):
|
||||
ohlc.append([steps[i], TX_prod[i], TX_max[i], TX_avg[i]])
|
||||
fig, ax = plt.subplots()
|
||||
candlestick_ohlc(ax, ohlc, width=0.6, colorup='green', colordown='red')
|
||||
|
||||
#Ticks, title and labels
|
||||
plt.xticks(steps, ['run{}'.format(i) for i in steps], rotation=45)
|
||||
plt.title('Candlestick Chart')
|
||||
plt.xlabel('Step')
|
||||
plt.ylabel('Price')
|
||||
|
||||
#Test
|
||||
plt.show()
|
||||
|
|
|
@ -18,11 +18,22 @@ import itertools
|
|||
import numpy as np
|
||||
from DAS.shape import Shape
|
||||
|
||||
# Dump results into XML files
|
||||
dumpXML = 1
|
||||
|
||||
# save progress vectors to XML
|
||||
saveProgress = 1
|
||||
|
||||
# plot progress for each run to PNG
|
||||
plotProgress = 1
|
||||
|
||||
# Save row and column distributions
|
||||
saveRCdist = 1
|
||||
|
||||
# Plot all figures
|
||||
visualization = 1
|
||||
|
||||
# Verbosity level
|
||||
logLevel = logging.INFO
|
||||
|
||||
# number of parallel workers. -1: all cores; 1: sequential
|
||||
|
@ -34,25 +45,25 @@ numJobs = -1
|
|||
evenLineDistribution = True
|
||||
|
||||
# Number of simulation runs with the same parameters for statistical relevance
|
||||
runs = range(2)
|
||||
runs = range(3)
|
||||
|
||||
# Number of validators
|
||||
numberNodes = range(256, 513, 128)
|
||||
numberNodes = range(128, 513, 128)
|
||||
|
||||
# Percentage of block not released by producer
|
||||
failureRates = range(10, 91, 40)
|
||||
failureRates = range(40, 81, 20)
|
||||
|
||||
# Block size in one dimension in segments. Block is blockSizes * blockSizes segments.
|
||||
blockSizes = range(32,65,16)
|
||||
blockSizes = range(64, 113, 128)
|
||||
|
||||
# Per-topic mesh neighborhood size
|
||||
netDegrees = range(6, 9, 2)
|
||||
netDegrees = range(8, 9, 2)
|
||||
|
||||
# number of rows and columns a validator is interested in
|
||||
chis = range(2, 5, 2)
|
||||
chis = range(2, 3, 2)
|
||||
|
||||
# ratio of class1 nodes (see below for parameters per class)
|
||||
class1ratios = [0.8, 0.9]
|
||||
class1ratios = [0.8]
|
||||
|
||||
# Number of validators per beacon node
|
||||
validatorsPerNode1 = [1]
|
Loading…
Reference in New Issue