consul/website/source/docs/agent/dns.html.md

11 KiB

layout page_title sidebar_current description
docs DNS Interface docs-agent-dns One of the primary query interfaces for Consul is DNS. The DNS interface allows applications to make use of service discovery without any high-touch integration with Consul.

DNS Interface

One of the primary query interfaces for Consul is DNS. The DNS interface allows applications to make use of service discovery without any high-touch integration with Consul.

For example, instead of making HTTP API requests to Consul, a host can use the DNS server directly via name lookups like redis.service.us-east-1.consul. This query automatically translates to a lookup of nodes that provide the redis service, are located in the us-east-1 datacenter, and have no failing health checks. It's that simple!

There are a number of configuration options that are important for the DNS interface, specifically client_addr, ports.dns, recursors, domain, and dns_config. By default, Consul will listen on 127.0.0.1:8600 for DNS queries in the consul. domain, without support for further DNS recursion. Please consult the documentation on configuration options, specifically the configuration items linked above, for more details.

There are a few ways to use the DNS interface. One option is to use a custom DNS resolver library and point it at Consul. Another option is to set Consul as the DNS server for a node and provide a recursors configuration so that non-Consul queries can also be resolved. The last method is to forward all queries for the "consul." domain to a Consul agent from the existing DNS server.

You can experiment with Consul's DNS server on the command line using tools such as dig:

$ dig @127.0.0.1 -p 8600 redis.service.dc1.consul. ANY

-> Note: In DNS, all queries are case-insensitive. A lookup of PostgreSQL.node.dc1.consul will find all nodes named postgresql.

Node Lookups

To resolve names, Consul relies on a very specific format for queries. There are fundamentally two types of queries: node lookups and service lookups. A node lookup, a simple query for the address of a named node, looks like this:

<node>.node[.datacenter].<domain>

For example, if we have a foo node with default settings, we could look for foo.node.dc1.consul. The datacenter is an optional part of the FQDN: if not provided, it defaults to the datacenter of the agent. If we know foo is running in the same datacenter as our local agent, we can instead use foo.node.consul. This convention allows for terse syntax where appropriate while supporting queries of nodes in remote datacenters as necessary.

For a node lookup, the only records returned are A and AAAA records containing the IP address, and TXT records containing the node_meta values of the node.

$ dig @127.0.0.1 -p 8600 foo.node.consul ANY

; <<>> DiG 9.8.3-P1 <<>> @127.0.0.1 -p 8600 foo.node.consul ANY
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 24355
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 0
;; WARNING: recursion requested but not available

;; QUESTION SECTION:
;foo.node.consul.		IN	ANY

;; ANSWER SECTION:
foo.node.consul.	0	IN	A	10.1.10.12
foo.node.consul.	0	IN	TXT	"meta_key=meta_value"
foo.node.consul.	0	IN	TXT	"value only"


;; AUTHORITY SECTION:
consul.			0	IN	SOA	ns.consul. postmaster.consul. 1392836399 3600 600 86400 0

By default the TXT records value will match the node's metadata key-value pairs according to RFC1464. Alternatively, the TXT record will only include the node's metadata value when the node's metadata key starts with rfc1035-.

Service Lookups

A service lookup is used to query for service providers. Service queries support two lookup methods: standard and strict RFC 2782.

By default, SRV weights are all set at 1, but changing weights is supported using the Weights attribute of the service definition.

Note that DNS is limited in size per request, even when performing DNS TCP queries.

For services having many instances (more than 500), it might not be possible to retrieve the complete list of instances for the service.

When DNS SRV response are sent, order is randomized, but weights are not taken into account. In the case of truncation different clients using weighted SRV responses will have partial and inconsistent views of instances weights so the request distribution could be skewed from the intended weights. In that case, it is recommended to use the HTTP API to retrieve the list of nodes.

Standard Lookup

The format of a standard service lookup is:

[tag.]<service>.service[.datacenter].<domain>

The tag is optional, and, as with node lookups, the datacenter is as well. If no tag is provided, no filtering is done on tag. If no datacenter is provided, the datacenter of this Consul agent is assumed.

If we want to find any redis service providers in our local datacenter, we could query redis.service.consul. If we want to find the PostgreSQL primary in a particular datacenter, we could query primary.postgresql.service.dc2.consul.

The DNS query system makes use of health check information to prevent routing to unhealthy nodes. When a service query is made, any services failing their health check or failing a node system check will be omitted from the results. To allow for simple load balancing, the set of nodes returned is also randomized each time. These mechanisms make it easy to use DNS along with application-level retries as the foundation for an auto-healing service oriented architecture.

For standard services queries, both A and SRV records are supported. SRV records provide the port that a service is registered on, enabling clients to avoid relying on well-known ports. SRV records are only served if the client specifically requests them, like so:

$ dig @127.0.0.1 -p 8600 consul.service.consul SRV

; <<>> DiG 9.8.3-P1 <<>> @127.0.0.1 -p 8600 consul.service.consul ANY
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 50483
;; flags: qr aa rd; QUERY: 1, ANSWER: 3, AUTHORITY: 1, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; QUESTION SECTION:
;consul.service.consul.		IN	SRV

;; ANSWER SECTION:
consul.service.consul.	0	IN	SRV	1 1 8300 foobar.node.dc1.consul.

;; ADDITIONAL SECTION:
foobar.node.dc1.consul.	0	IN	A	10.1.10.12

RFC 2782 Lookup

The format for RFC 2782 SRV lookups is:

_<service>._<protocol>[.service][.datacenter][.domain]

Per RFC 2782, SRV queries should use underscores, _, as a prefix to the service and protocol values in a query to prevent DNS collisions. The protocol value can be any of the tags for a service. If the service has no tags, tcp should be used. If tcp is specified as the protocol, the query will not perform any tag filtering.

Other than the query format and default tcp protocol/tag value, the behavior of the RFC style lookup is the same as the standard style of lookup.

If you registered the service rabbitmq on port 5672 and tagged it with amqp, you could make an RFC 2782 query for its SRV record as _rabbitmq._amqp.service.consul:

$ dig @127.0.0.1 -p 8600 _rabbitmq._amqp.service.consul SRV

; <<>> DiG 9.8.3-P1 <<>> @127.0.0.1 -p 8600 _rabbitmq._amqp.service.consul ANY
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 52838
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; QUESTION SECTION:
;_rabbitmq._amqp.service.consul.	IN	SRV

;; ANSWER SECTION:
_rabbitmq._amqp.service.consul.	0	IN	SRV	1 1 5672 rabbitmq.node1.dc1.consul.

;; ADDITIONAL SECTION:
rabbitmq.node1.dc1.consul.	0	IN	A	10.1.11.20

Again, note that the SRV record returns the port of the service as well as its IP.

Prepared Query Lookups

The format of a prepared query lookup is:

<query or name>.query[.datacenter].<domain>

The datacenter is optional, and if not provided, the datacenter of this Consul agent is assumed.

The query or name is the ID or given name of an existing Prepared Query. These behave like standard service queries but provide a much richer set of features, such as filtering by multiple tags and automatically failing over to look for services in remote datacenters if no healthy nodes are available in the local datacenter. Consul 0.6.4 and later also added support for prepared query templates which can match names using a prefix match, allowing one template to apply to potentially many services.

To allow for simple load balancing, the set of nodes returned is randomized each time. Both A and SRV records are supported. SRV records provide the port that a service is registered on, enabling clients to avoid relying on well-known ports. SRV records are only served if the client specifically requests them.

Connect-Capable Service Lookups

To find Connect-capable services:

<service>.connect.<domain>

This will find all Connect-capable endpoints for the given service. A Connect-capable endpoint may be both a proxy for a service or a natively integrated Connect application. The DNS interface does not differentiate the two.

Most services will use a proxy that handles service discovery automatically and therefore won't use this DNS format. This DNS format is primarily useful for Connect-native applications.

This endpoint currently only finds services within the same datacenter and doesn't support tags. This DNS interface will be expanded over time. If you need more complex behavior, please use the catalog API.

UDP Based DNS Queries

When the DNS query is performed using UDP, Consul will truncate the results without setting the truncate bit. This is to prevent a redundant lookup over TCP that generates additional load. If the lookup is done over TCP, the results are not truncated.

Caching

By default, all DNS results served by Consul set a 0 TTL value. This disables caching of DNS results. However, there are many situations in which caching is desirable for performance and scalability. This is discussed more in the guide for DNS caching.

WAN Address Translation

By default, Consul DNS queries will return a node's local address, even when being queried from a remote datacenter. If you need to use a different address to reach a node from outside its datacenter, you can configure this behavior using the advertise-wan and translate_wan_addrs configuration options.