EIPs/EIPS/eip-1155.md

18 KiB

eip title author type category status created discussions-to
1155 Multi Token Standard Witek Radomski <witek@enjin.com>, Andrew Cooke <andrew@enjin.com>, Philippe Castonguay <ph.castonguay@gmail.com>, James Therien <james@enjin.com>, Eric Binet <eric@enjin.com> Standards Track ERC Draft 2018-06-17 https://github.com/ethereum/EIPs/issues/1155

Simple Summary

A standard interface for contracts that manage multiple token types. A single deployed contract may include any combination of fungible tokens, non-fungible tokens, or other configurations (for example, semi-fungible tokens).

Abstract

This standard outlines a smart contract interface where one can represent any number of Fungible and Non-Fungible tokens in a single contract. Existing standards such as ERC-20 require deployment of separate contracts per token. The ERC-721 standard's Token ID is a single non-fungible index and the group of these non-fungibles is deployed as a single contract with settings for the entire collection. In contrast, the ERC-1155 Multi Token Standard allows for each Token ID to represent a new configurable token type, which may have its own metadata, supply and other attributes.

The _id parameter is contained in each function's parameters and indicates a specific token or token type in a transaction.

Motivation

Tokens standards like ERC-20 and ERC-721 require a separate contract to be deployed for each fungible or NFT token/collection. This places a lot of redundant bytecode on the Ethereum blockchain and limits certain functionality by the nature of separating each token contract into its own permissioned address. With the rise of crypto games and platforms like Enjin Coin, game developers may be creating thousands of tokens, and a new type of token standard is needed to support this.

New functionality is possible with this design, such as transferring multiple token types at once, saving on transaction costs. Trading (escrow / atomic swaps) of multiple tokens can be built on top of this standard and it removes the need to "approve" individual token contracts separately. It is also easy to describe and mix multiple fungible or non-fungible tokens in a single contract.

Specification

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.

Smart contracts implementing the ERC-1155 standard MUST implement the ERC1155 and ERC165 interfaces.

pragma solidity ^0.4.25;

/**
    @title ERC-1155 Multi Token Standard
    @dev See https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1155.md
    Note: The ERC-165 identifier for this interface is 0xd9b67a26.
 */
interface ERC1155 /* is ERC165 */ {
    /**
        @dev Either TransferSingle or TransferBatch MUST emit when tokens are transferred, including zero value transfers as well as minting or burning.
        Either event from address `0x0` signifies a minting operation.
        An event to address `0x0` signifies a burning or melting operation.
        The total value transferred from address 0x0 minus the total value transferred to 0x0 may be used by clients and exchanges to be added to the "circulating supply" for a given token ID
        This MAY emit a 0 value, from `0x0` to `0x0` with `_operator` assuming the role of the token creator to define a token ID with no initial balance at the time of creation.
    */
    event TransferSingle(address indexed _operator, address indexed _from, address indexed _to, uint256 _id, uint256 _value);
    event TransferBatch(address indexed _operator, address indexed _from, address indexed _to, uint256[] _ids, uint256[] _values);

    /**
        @dev MUST emit when an approval is updated.
    */
    event ApprovalForAll(address indexed _owner, address indexed _operator, bool _approved);

    /**
        @dev MUST emit when the URI is updated for a token ID.
        The URI MUST point a JSON file that conforms to the "ERC-1155 Metadata JSON Schema".
    */
    event URI(string _value, uint256 indexed _id);

    /**
        @dev MUST emit when the Name is updated for a token ID.
    */
    event Name(string _value, uint256 indexed _id);

    /**
        @notice Transfers value amount of an _id from the _from address to the _to addresses specified. Each parameter array should be the same length, with each index correlating.
        @dev MUST emit TransferSingle event on success.
        Caller must be approved to manage the _from account's tokens (see isApprovedForAll).
        MUST Throw if `_to` is the zero address.
        MUST Throw if `_id` is not a valid token ID.
        MUST Throw on any other error.
        When transfer is complete, this function MUST check if `_to` is a smart contract (code size > 0). If so, it MUST call `onERC1155Received` on `_to` and revert if the return value is not `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`.
        @param _from    Source addresses
        @param _to      Target addresses
        @param _id      ID of the token type
        @param _value   Transfer amount
        @param _data    Additional data with no specified format, sent in call to `_to`
    */
    function safeTransferFrom(address _from, address _to, uint256 _id, uint256 _value, bytes _data) external;

    /**
        @notice Send multiple types of Tokens from a 3rd party in one transfer (with safety call).
        @dev MUST emit TransferBatch event on success.
        Caller must be approved to manage the _from account's tokens (see isApprovedForAll).
        MUST Throw if `_to` is the zero address.
        MUST Throw if any of the `_ids` is not a valid token ID.
        MUST Throw on any other error.
        When transfer is complete, this function MUST check if `_to` is a smart contract (code size > 0). If so, it MUST call `onERC1155BatchReceived` on `_to` and revert if the return value is not `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`.
        @param _from    Source address
        @param _to      Target address
        @param _ids     IDs of each token type
        @param _values  Transfer amounts per token type
        @param _data    Additional data with no specified format, sent in call to `_to`
    */
    function safeBatchTransferFrom(address _from, address _to, uint256[] _ids, uint256[] _values, bytes _data) external;

    /**
        @notice Get the balance of an account's Tokens.
        @param _owner  The address of the token holder
        @param _id     ID of the Token
        @return        The _owner's balance of the Token type requested
     */
    function balanceOf(address _owner, uint256 _id) external view returns (uint256);
    
    /**
        @notice Get the balance of multiple account/token pairs
        @param _owners The addresses of the token holders
        @param _ids    ID of the Tokens
        @return        The _owner's balance of the Token types requested
     */
    function balanceOfBatch(address[] _owners, uint256[] _ids) external view returns (uint256[]);

    /**
        @notice Enable or disable approval for a third party ("operator") to manage all of the caller's tokens.
        @dev MUST emit the ApprovalForAll event on success.
        @param _operator  Address to add to the set of authorized operators
        @param _approved  True if the operator is approved, false to revoke approval
    */
    function setApprovalForAll(address _operator, bool _approved) external;

    /** 
        @notice Queries the approval status of an operator for a given owner.
        @param _owner     The owner of the Tokens
        @param _operator  Address of authorized operator
        @return           True if the operator is approved, false if not
    */
    function isApprovedForAll(address _owner, address _operator) external view returns (bool);
}

ERC-1155 Token Receiver

Smart contracts MUST implement this interface to accept transfers.

interface ERC1155TokenReceiver {
    /**
        @notice Handle the receipt of a single ERC1155 token type.
        @dev An ERC1155-compliant smart contract MUST call this function on the token recipient contract, at the end of a `safeTransferFrom` after the balance has been updated.
        This function MAY throw to revert and reject the transfer.
        Return of other than the magic value MUST result in the transaction being reverted.
        Note: The contract address is always the message sender.
        @param _operator  The address which called `safeTransferFrom` function
        @param _from      The address which previously owned the token
        @param _id        An array containing the ids of the token being transferred
        @param _value     An array containing the amount of tokens being transferred
        @param _data      Additional data with no specified format
        @return           `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
    */
    function onERC1155Received(address _operator, address _from, uint256 _id, uint256 _value, bytes _data) external returns(bytes4);
    
    /**
        @notice Handle the receipt of multiple ERC1155 token types.
        @dev An ERC1155-compliant smart contract MUST call this function on the token recipient contract, at the end of a `safeBatchTransferFrom` after the balances have been updated.
        This function MAY throw to revert and reject the transfer.
        Return of other than the magic value WILL result in the transaction being reverted.
        Note: The contract address is always the message sender.
        @param _operator  The address which called `safeTransferFrom` function
        @param _from      The address which previously owned the token
        @param _ids       An array containing ids of each token being transferred
        @param _values    An array containing amounts of each token being transferred
        @param _data      Additional data with no specified format
        @return           `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
    */
    function onERC1155BatchReceived(address _operator, address _from, uint256[] _ids, uint256[] _values, bytes _data) external returns(bytes4);
}

Metadata

The URI value allows for ID substitution by clients. If the string {id} exists in any URI, clients MUST replace this with the actual token ID in hexadecimal form. This allows for large number of tokens to use the same on-chain string by defining a URI once, for a large collection of tokens. Example of such a URI: https://token-cdn-domain/{id}.json would be replaced with https://token-cdn-domain/0x7800000000000001000000000000000000000000000000000000000000000000.json if the client is referring to token ID 0x7800000000000001000000000000000000000000000000000000000000000000.

Metadata Extensions

The following optional extensions can be identified with the (ERC-165 Standard Interface Detection)[https://github.com/ethereum/EIPs/blob/master/EIPS/eip-165.md].

Changes to the URI or Name MUST emit their corresponding events if the change can be expressed with an event. If the optional ERC1155Metadata_URI or ERC1155Metadata_Name extensions are included, the values returned by these functions SHOULD be used to retrieve values for which no event was emitted. The functions MUST return the same value as the event if it was emitted.

/**
    Note: The ERC-165 identifier for this interface is 0x0e89341c.
*/
interface ERC1155Metadata_URI {
    /**
        @notice A distinct Uniform Resource Identifier (URI) for a given token.
        @dev URIs are defined in RFC 3986.
        The URI may point to a JSON file that conforms to the "ERC-1155 Metadata JSON Schema".
        @return URI string
    */
    function uri(uint256 _id) external view returns (string);
}

/**
    Note: The ERC-165 identifier for this interface is 0x00ad800c.
*/
interface ERC1155Metadata_Name {
    /**
        @notice A human-readable name for a given token
        @return Name string
    */
    function name(uint256 _id) external view returns (string);
}

ERC-1155 Metadata URI JSON Schema

This JSON schema is loosely based on the "ERC721 Metadata JSON Schema", but includes optional formatting to allow for ID substitution by clients. If the string {id} exists in any JSON value, it MUST be replaced with the actual token ID, by all client software that follows this standard.

{
    "title": "Token Metadata",
    "type": "object",
    "properties": {
        "name": {
            "type": "string",
            "description": "Identifies the asset to which this token represents",
        },
        "decimals": {
            "type": "integer",
            "description": "The number of decimal places that the token amount should display - e.g. 18, means to divide the token amount by 1000000000000000000 to get its user representation.",
        },
        "description": {
            "type": "string",
            "description": "Describes the asset to which this token represents",
        },
        "image": {
            "type": "string",
            "description": "A URI pointing to a resource with mime type image/* representing the asset to which this token represents. Consider making any images at a width between 320 and 1080 pixels and aspect ratio between 1.91:1 and 4:5 inclusive.",
        },
        "properties": {
            "type": "object",
            "description": "Arbitrary properties. Values may be strings, numbers, object or arrays.",
        },
    }
}

An example of an ERC-1155 Metadata JSON file follows. The properties array proposes some SUGGESTED formatting for token-specific display properties and metadata.

{
	"name": "Asset Name",
	"description": "Lorem ipsum...",
	"image": "https:\/\/s3.amazonaws.com\/your-bucket\/images\/{id}.png",
	"properties": {
		"simple_property": "example value",
		"rich_property": {
			"name": "Name",
			"value": "123",
			"display_value": "123 Example Value",
			"class": "emphasis",
			"css": {
				"color": "#ffffff",
				"font-weight": "bold",
				"text-decoration": "underline"
			}
		},
		"array_property": {
			"name": "Name",
			"value": [1,2,3,4],
			"class": "emphasis"
		}
	}
}

Usage

This standard can be used to represent multiple token types for an entire domain. Both Fungible and Non-Fungible tokens can be stored in the same smart-contract.

Batch Operations

Batch Transfers

The safeBatchTransferFrom function allows for batch transfers of multiple token ids and values. Gas savings improves with the number of token types in the batch transfer, compared to single transfers with multiple transactions.

Batch Balance

The balanceOfBatch function allows clients to retrieve balances of multiple owners and token ids with a single call.

Approval

Approval

Single-token based approval of specific token values has been dropped in favor of the function setApprovalForAll which allows an operator to manage one's entire set of tokens on behalf of the approver. To scope an approval to a specific set or quantity of tokens, we recommend deploying a contract that contains the desired rules, and directing end-users to approve this contract to manage their set of tokens.

Backwards Compatibility

Backwards Compatibility

This standard is compatible with ERC-721 non-fungible tokens. Both interfaces can be inherited without conflict:

contract MultiTokens is ERC1155, ERC721 {
    ...
}
Enumeration

Enumerating from events

In order to keep storage requirements light for contracts implementing ERC-1155, enumeration (discovering the IDs and values of tokens) must be done using event logs. It is RECOMMENDED that clients such as exchanges and blockchain explorers maintain a local database containing the Token ID, Supply, and URI at the minimum. This can be built from each TransferSingle, TransferBatch, and URI event, starting from the block the smart contract was deployed until the latest block.

ERC-1155 contracts must therefore carefully emit TransferSingle or TransferBatch events in any instance where tokens are created, minted, or destroyed.

Non-Fungible Tokens

Non-Fungible Tokens

The following strategy is an example of how to mix fungible and non-fungible tokens together in the same contract. The top 128 bits of the uint256 _id parameter in any ERC-1155 function could represent the base token ID, while the bottom 128 bits might be used for any extra data passed to the contract.

Non-Fungible tokens can be interacted with using an index based accessor into the contract/token data set. Therefore to access a particular token set within a mixed data contract and particular NFT within that set, _id could be passed as <uint128: base token id><uint128: index of NFT>.

Inside the contract code the two pieces of data needed to access the individual NFT can be extracted with uint128(~0) and the same mask shifted by 128.

Example of split ID bits

uint256 baseToken = 12345 << 128;
uint128 index = 50;

balanceOf(baseToken, msg.sender); // Get balance of the base token
balanceOf(baseToken + index, msg.sender); // Get balance of the Non-Fungible token index

References

Standards

Implementations

Articles & Discussions

Copyright and related rights waived via CC0.