plonky2/evm/src/arithmetic/modular.rs
Hamish Ivey-Law d7bb47318c
Modular operations for the EVM arithmetic unit (#755)
* First draft of 256-bit addition.

* Update comment.

* cargo fmt

* Rename addition evaluation file.

* Port ALU logic from SZ.

* Give a name to some magic numbers.

* `addition.rs` -> `add.rs`; fix carry propagation in add; impl sub.

* Clippy.

* Combine hi and lo parts of the output.

* Implement MUL.

* Suppress Clippy's attempt to make my code even harder to read.

* Next draft of MUL.

* Make all limbs (i.e. input and output) 16-bits.

* Tidying.

* Use iterators instead of building arrays.

* Documentation.

* Clippy is wrong; also cargo fmt.

* Un-refactor equality checking, since it was wrong for sub.

* Daniel comments.

* Daniel comments.

* Rename folder 'alu' -> 'arithmetic'.

* Rename file.

* Finish changing name ALU -> Arithmetic Unit.

* Finish removing dependency on array_zip feature.

* Remove operations that will be handled elsewhere.

* Rename var; tidy up.

* Clean up columns; mark places where range-checks need to be done.

* Import all names in 'columns' to reduce verbiage.

* cargo fmt

* Fix aux_in calculation in mul.

* Remove redundant 'allow's; more precise range-check size.

* Document functions.

* Document MUL instruction verification technique.

* Initial tests for ADD.

* Minor test fixes; add test for SUB.

* Fix bugs in generate functions.

* Fix SUB verification; refactor equality verification.

* cargo fmt

* Add test for MUL and fix some bugs.

* Update doc.

* Quiet incorrect clippy error.

* Initial implementation of ADDMOD and MOD.

* Fixes to addmod.

* Update doc.

* Do 1000 random tests instead of just 1.

* Documentation fix.

* Working version of ADDMOD.

* Working version of MOD.

* Name magic number; do multiple MUL tests.

* Add code and test for special case; add some docs.

* Fix spelling mistake.

* Simplify asserts.

* Tidy comment.

* Remove unused module.

* cargo fmt

* Check that output is reduced.

* Add conversion of canonical `i64` to a `Field64`.

* Handle zero modulus within degree constraint.

* cargo fmt

* Fix some comments.

* Check that the top half of the product is zero!

* Start of refactor.

* Refactoring.

* Remove zero and reduction handling from addmod.

* Refactoring; renaming; bug fixes.

* Reuse intermediate calculations across all modular operations; don't negate quot poly unnecessarily.

* Fix bug where last elt of q*m wasn't checked.

* Refactoring.

* Move circuit poly functions to utils.rs.

* Rename ADDMOD stuff to MODULAR.

* Rename module addmod -> modular.

* Handle zero modulus.

* Verify that output is reduced.

* Implement recursive version of modular circuits.

* clippy

* Tidy up i64 -> Field conversion following Jacqui's comments.

* cargo fmt

* Improved documentation.

* Address Jacqui's comments.

* Save some gates by using builder.arithmetic_extension().
2022-10-07 17:15:50 +11:00

594 lines
22 KiB
Rust

//! Support for the EVM modular instructions ADDMOD, MULMOD and MOD.
//!
//! This crate verifies an EVM modular instruction, which takes three
//! 256-bit inputs A, B and M, and produces a 256-bit output C satisfying
//!
//! C = operation(A, B) (mod M).
//!
//! where operation can be addition, multiplication, or just return
//! the first argument (for MOD). Inputs A, B and M, and output C,
//! are given as arrays of 16-bit limbs. For example, if the limbs of
//! A are a[0]...a[15], then
//!
//! A = \sum_{i=0}^15 a[i] β^i,
//!
//! where β = 2^16 = 2^LIMB_BITS. To verify that A, B, M and C satisfy
//! the equation we proceed as follows. Define
//!
//! a(x) = \sum_{i=0}^15 a[i] x^i
//!
//! (so A = a(β)) and similarly for b(x), m(x) and c(x). Then
//! operation(A,B) = C (mod M) if and only if the polynomial
//!
//! operation(a(x), b(x)) - c(x) - m(x) * q(x)
//!
//! is zero when evaluated at x = β, i.e. it is divisible by (x - β).
//! Thus exists a polynomial s such that
//!
//! operation(a(x), b(x)) - c(x) - m(x) * q(x) - (x - β) * s(x) == 0
//!
//! if and only if operation(A,B) = C (mod M). In the code below, this
//! "constraint polynomial" is constructed in the variable
//! `constr_poly`. It must be identically zero for the modular
//! operation to be verified, or, equivalently, each of its
//! coefficients must be zero. The variable names of the constituent
//! polynomials are (writing N for N_LIMBS=16):
//!
//! a(x) = \sum_{i=0}^{N-1} input0[i] * β^i
//! b(x) = \sum_{i=0}^{N-1} input1[i] * β^i
//! c(x) = \sum_{i=0}^{N-1} output[i] * β^i
//! m(x) = \sum_{i=0}^{N-1} modulus[i] * β^i
//! q(x) = \sum_{i=0}^{2N-1} quot[i] * β^i
//! s(x) = \sum_i^{2N-2} aux[i] * β^i
//!
//! Because A, B, M and C are 256-bit numbers, the degrees of a, b, m
//! and c are (at most) N-1 = 15. If m = 1, then Q would be A*B which
//! can be up to 2^512 - ε, so deg(q) can be up to 2*N-1 = 31. Note
//! that, although for arbitrary m and q we might have deg(m*q) = 3*N-2,
//! because the magnitude of M*Q must match that of operation(A,B), we
//! always have deg(m*q) <= 2*N-1. Finally, in order for all the degrees
//! to match, we have deg(s) <= 2*N-2 = 30.
//!
//! -*-
//!
//! To verify that the output is reduced, that is, output < modulus,
//! the prover supplies the value `out_aux_red` which must satisfy
//!
//! output - modulus = out_aux_red + 2^256
//!
//! and these values are passed to the "less than" operation.
//!
//! -*-
//!
//! The EVM defines division by zero as zero. We handle this as
//! follows:
//!
//! The prover supplies a binary value `mod_is_zero` which is one if
//! the modulus is zero and zero otherwise. This is verified, then
//! added to the modulus (this can't overflow, as modulus[0] was
//! range-checked and mod_is_zero is 0 or 1). The rest of the
//! calculation proceeds as if modulus was actually 1; this correctly
//! verifies that the output is zero, as required by the standard.
//! To summarise:
//!
//! - mod_is_zero is 0 or 1
//! - if mod_is_zero is 1, then
//! - given modulus is 0
//! - updated modulus is 1, which forces the correct output of 0
//! - if mod_is_zero is 0, then
//! - given modulus can be 0 or non-zero
//! - updated modulus is same as given
//! - if modulus is non-zero, correct output is obtained
//! - if modulus is 0, then the test output < modulus, checking that
//! the output is reduced, will fail, because output is non-negative.
use num::{BigUint, Zero};
use plonky2::field::extension::Extendable;
use plonky2::field::packed::PackedField;
use plonky2::field::types::Field;
use plonky2::hash::hash_types::RichField;
use plonky2::iop::ext_target::ExtensionTarget;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use super::columns;
use crate::arithmetic::columns::*;
use crate::arithmetic::compare::{eval_ext_circuit_lt, eval_packed_generic_lt};
use crate::arithmetic::utils::*;
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::range_check_error;
/// Convert the base-2^16 representation of a number into a BigUint.
///
/// Given `N` unsigned 16-bit values in `limbs`, return the BigUint
///
/// \sum_{i=0}^{N-1} limbs[i] * β^i.
///
fn columns_to_biguint<const N: usize>(limbs: &[i64; N]) -> BigUint {
const BASE: i64 = 1i64 << LIMB_BITS;
// Although the input type is i64, the values must always be in
// [0, 2^16 + ε) because of the caller's range check on the inputs
// (the ε allows us to convert calculated output, which can be
// bigger than 2^16).
debug_assert!(limbs.iter().all(|&x| x >= 0));
let mut limbs_u32 = Vec::with_capacity(N / 2 + 1);
let mut cy = 0i64; // cy is necessary to handle ε > 0
for i in 0..(N / 2) {
let t = cy + limbs[2 * i] + BASE * limbs[2 * i + 1];
limbs_u32.push(t as u32);
cy = t >> 32;
}
if N & 1 != 0 {
// If N is odd we need to add the last limb on its own
let t = cy + limbs[N - 1];
limbs_u32.push(t as u32);
cy = t >> 32;
}
limbs_u32.push(cy as u32);
BigUint::from_slice(&limbs_u32)
}
/// Convert a BigUint into a base-2^16 representation.
///
/// Given a BigUint `num`, return an array of `N` unsigned 16-bit
/// values, say `limbs`, such that
///
/// num = \sum_{i=0}^{N-1} limbs[i] * β^i.
///
/// Note that `N` must be at least ceil(log2(num)/16) in order to be
/// big enough to hold `num`.
fn biguint_to_columns<const N: usize>(num: &BigUint) -> [i64; N] {
assert!(num.bits() <= 16 * N as u64);
let mut output = [0i64; N];
for (i, limb) in num.iter_u32_digits().enumerate() {
output[2 * i] = limb as u16 as i64;
output[2 * i + 1] = (limb >> LIMB_BITS) as i64;
}
output
}
/// Generate the output and auxiliary values for given `operation`.
///
/// NB: `operation` can set the higher order elements in its result to
/// zero if they are not used.
fn generate_modular_op<F: RichField>(
lv: &mut [F; NUM_ARITH_COLUMNS],
operation: fn([i64; N_LIMBS], [i64; N_LIMBS]) -> [i64; 2 * N_LIMBS - 1],
) {
// Inputs are all range-checked in [0, 2^16), so the "as i64"
// conversion is safe.
let input0_limbs = MODULAR_INPUT_0.map(|c| F::to_canonical_u64(&lv[c]) as i64);
let input1_limbs = MODULAR_INPUT_1.map(|c| F::to_canonical_u64(&lv[c]) as i64);
let mut modulus_limbs = MODULAR_MODULUS.map(|c| F::to_canonical_u64(&lv[c]) as i64);
// The use of BigUints is just to avoid having to implement
// modular reduction.
let mut modulus = columns_to_biguint(&modulus_limbs);
// constr_poly is initialised to the calculated input, and is
// used as such for the BigUint reduction; later, other values are
// added/subtracted, which is where its meaning as the "constraint
// polynomial" comes in.
let mut constr_poly = [0i64; 2 * N_LIMBS];
constr_poly[..2 * N_LIMBS - 1].copy_from_slice(&operation(input0_limbs, input1_limbs));
if modulus.is_zero() {
modulus += 1u32;
modulus_limbs[0] += 1i64;
lv[MODULAR_MOD_IS_ZERO] = F::ONE;
} else {
lv[MODULAR_MOD_IS_ZERO] = F::ZERO;
}
let input = columns_to_biguint(&constr_poly);
// modulus != 0 here, because, if the given modulus was zero, then
// we added 1 to it above.
let output = &input % &modulus;
let output_limbs = biguint_to_columns::<N_LIMBS>(&output);
let quot = (&input - &output) / &modulus; // exact division
let quot_limbs = biguint_to_columns::<{ 2 * N_LIMBS }>(&quot);
// two_exp_256 == 2^256
let mut two_exp_256 = BigUint::zero();
two_exp_256.set_bit(256, true);
// output < modulus here, so the proof requires (output - modulus) % 2^256:
let out_aux_red = biguint_to_columns::<N_LIMBS>(&(two_exp_256 + output - modulus));
// constr_poly is the array of coefficients of the polynomial
//
// operation(a(x), b(x)) - c(x) - s(x)*m(x).
//
pol_sub_assign(&mut constr_poly, &output_limbs);
let prod = pol_mul_wide2(quot_limbs, modulus_limbs);
pol_sub_assign(&mut constr_poly, &prod[0..2 * N_LIMBS]);
// Higher order terms of the product must be zero for valid quot and modulus:
debug_assert!(&prod[2 * N_LIMBS..].iter().all(|&x| x == 0i64));
// constr_poly must be zero when evaluated at x = β :=
// 2^LIMB_BITS, hence it's divisible by (x - β). `aux_limbs` is
// the result of removing that root.
let aux_limbs = pol_remove_root_2exp::<LIMB_BITS, _>(constr_poly);
for deg in 0..N_LIMBS {
lv[MODULAR_OUTPUT[deg]] = F::from_canonical_i64(output_limbs[deg]);
lv[MODULAR_OUT_AUX_RED[deg]] = F::from_canonical_i64(out_aux_red[deg]);
lv[MODULAR_QUO_INPUT[deg]] = F::from_canonical_i64(quot_limbs[deg]);
lv[MODULAR_QUO_INPUT[deg + N_LIMBS]] = F::from_canonical_i64(quot_limbs[deg + N_LIMBS]);
lv[MODULAR_AUX_INPUT[deg]] = F::from_noncanonical_i64(aux_limbs[deg]);
// Don't overwrite MODULAR_MOD_IS_ZERO, which is at the last
// index of MODULAR_AUX_INPUT
if deg < N_LIMBS - 1 {
lv[MODULAR_AUX_INPUT[deg + N_LIMBS]] =
F::from_noncanonical_i64(aux_limbs[deg + N_LIMBS]);
}
}
}
/// Generate the output and auxiliary values for modular operations.
///
/// `filter` must be one of `columns::IS_{ADDMOD,MULMOD,MOD}`.
pub(crate) fn generate<F: RichField>(lv: &mut [F; NUM_ARITH_COLUMNS], filter: usize) {
match filter {
columns::IS_ADDMOD => generate_modular_op(lv, pol_add),
columns::IS_MULMOD => generate_modular_op(lv, pol_mul_wide),
columns::IS_MOD => generate_modular_op(lv, |a, _| pol_extend(a)),
_ => panic!("generate modular operation called with unknown opcode"),
}
}
/// Build the part of the constraint polynomial that's common to all
/// modular operations, and perform the common verifications.
///
/// Specifically, with the notation above, build the polynomial
///
/// c(x) + q(x) * m(x) + (x - β) * s(x)
///
/// and check consistency when m = 0, and that c is reduced.
#[allow(clippy::needless_range_loop)]
fn modular_constr_poly<P: PackedField>(
lv: &[P; NUM_ARITH_COLUMNS],
yield_constr: &mut ConstraintConsumer<P>,
filter: P,
) -> [P; 2 * N_LIMBS] {
range_check_error!(MODULAR_INPUT_0, 16);
range_check_error!(MODULAR_INPUT_1, 16);
range_check_error!(MODULAR_MODULUS, 16);
range_check_error!(MODULAR_QUO_INPUT, 16);
range_check_error!(MODULAR_AUX_INPUT, 20, signed);
range_check_error!(MODULAR_OUTPUT, 16);
let mut modulus = MODULAR_MODULUS.map(|c| lv[c]);
let mod_is_zero = lv[MODULAR_MOD_IS_ZERO];
// Check that mod_is_zero is zero or one
yield_constr.constraint(filter * (mod_is_zero * mod_is_zero - mod_is_zero));
// Check that mod_is_zero is zero if modulus is not zero (they
// could both be zero)
let limb_sum = modulus.into_iter().sum::<P>();
yield_constr.constraint(filter * limb_sum * mod_is_zero);
// See the file documentation for why this suffices to handle
// modulus = 0.
modulus[0] += mod_is_zero;
let output = MODULAR_OUTPUT.map(|c| lv[c]);
// Verify that the output is reduced, i.e. output < modulus.
let out_aux_red = MODULAR_OUT_AUX_RED.map(|c| lv[c]);
let is_less_than = P::ONES;
eval_packed_generic_lt(
yield_constr,
filter,
output,
modulus,
out_aux_red,
is_less_than,
);
// prod = q(x) * m(x)
let quot = MODULAR_QUO_INPUT.map(|c| lv[c]);
let prod = pol_mul_wide2(quot, modulus);
// higher order terms must be zero
for &x in prod[2 * N_LIMBS..].iter() {
yield_constr.constraint(filter * x);
}
// constr_poly = c(x) + q(x) * m(x)
let mut constr_poly: [_; 2 * N_LIMBS] = prod[0..2 * N_LIMBS].try_into().unwrap();
pol_add_assign(&mut constr_poly, &output);
// constr_poly = c(x) + q(x) * m(x) + (x - β) * s(x)
let aux = MODULAR_AUX_INPUT.map(|c| lv[c]);
let base = P::Scalar::from_canonical_u64(1 << LIMB_BITS);
pol_add_assign(&mut constr_poly, &pol_adjoin_root(aux, base));
constr_poly
}
/// Add constraints for modular operations.
pub(crate) fn eval_packed_generic<P: PackedField>(
lv: &[P; NUM_ARITH_COLUMNS],
yield_constr: &mut ConstraintConsumer<P>,
) {
// NB: The CTL code guarantees that filter is 0 or 1, i.e. that
// only one of the operations below is "live".
let filter = lv[columns::IS_ADDMOD] + lv[columns::IS_MULMOD] + lv[columns::IS_MOD];
// constr_poly has 2*N_LIMBS limbs
let constr_poly = modular_constr_poly(lv, yield_constr, filter);
let input0 = MODULAR_INPUT_0.map(|c| lv[c]);
let input1 = MODULAR_INPUT_1.map(|c| lv[c]);
let add_input = pol_add(input0, input1);
let mul_input = pol_mul_wide(input0, input1);
let mod_input = pol_extend(input0);
for (input, &filter) in [
(&add_input, &lv[columns::IS_ADDMOD]),
(&mul_input, &lv[columns::IS_MULMOD]),
(&mod_input, &lv[columns::IS_MOD]),
] {
// Need constr_poly_copy to be the first argument to
// pol_sub_assign, since it is the longer of the two
// arguments.
let mut constr_poly_copy = constr_poly;
pol_sub_assign(&mut constr_poly_copy, input);
// At this point constr_poly_copy holds the coefficients of
// the polynomial
//
// operation(a(x), b(x)) - c(x) - q(x) * m(x) - (x - β) * s(x)
//
// where operation is add, mul or |a,b|->a. The modular
// operation is valid if and only if all of those coefficients
// are zero.
for &c in constr_poly_copy.iter() {
yield_constr.constraint(filter * c);
}
}
}
fn modular_constr_poly_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
lv: &[ExtensionTarget<D>; NUM_ARITH_COLUMNS],
builder: &mut CircuitBuilder<F, D>,
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
filter: ExtensionTarget<D>,
) -> [ExtensionTarget<D>; 2 * N_LIMBS] {
let mut modulus = MODULAR_MODULUS.map(|c| lv[c]);
let mod_is_zero = lv[MODULAR_MOD_IS_ZERO];
let t = builder.mul_sub_extension(mod_is_zero, mod_is_zero, mod_is_zero);
let t = builder.mul_extension(filter, t);
yield_constr.constraint(builder, t);
let limb_sum = builder.add_many_extension(modulus);
let t = builder.mul_extension(limb_sum, mod_is_zero);
let t = builder.mul_extension(filter, t);
yield_constr.constraint(builder, t);
modulus[0] = builder.add_extension(modulus[0], mod_is_zero);
let output = MODULAR_OUTPUT.map(|c| lv[c]);
let out_aux_red = MODULAR_OUT_AUX_RED.map(|c| lv[c]);
let is_less_than = builder.one_extension();
eval_ext_circuit_lt(
builder,
yield_constr,
filter,
output,
modulus,
out_aux_red,
is_less_than,
);
let quot = MODULAR_QUO_INPUT.map(|c| lv[c]);
let prod = pol_mul_wide2_ext_circuit(builder, quot, modulus);
for &x in prod[2 * N_LIMBS..].iter() {
let t = builder.mul_extension(filter, x);
yield_constr.constraint(builder, t);
}
let mut constr_poly: [_; 2 * N_LIMBS] = prod[0..2 * N_LIMBS].try_into().unwrap();
pol_add_assign_ext_circuit(builder, &mut constr_poly, &output);
let aux = MODULAR_AUX_INPUT.map(|c| lv[c]);
let base = builder.constant_extension(F::Extension::from_canonical_u64(1u64 << LIMB_BITS));
let t = pol_adjoin_root_ext_circuit(builder, aux, base);
pol_add_assign_ext_circuit(builder, &mut constr_poly, &t);
constr_poly
}
pub(crate) fn eval_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
builder: &mut CircuitBuilder<F, D>,
lv: &[ExtensionTarget<D>; NUM_ARITH_COLUMNS],
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
) {
let filter = builder.add_many_extension([
lv[columns::IS_ADDMOD],
lv[columns::IS_MULMOD],
lv[columns::IS_MOD],
]);
let constr_poly = modular_constr_poly_ext_circuit(lv, builder, yield_constr, filter);
let input0 = MODULAR_INPUT_0.map(|c| lv[c]);
let input1 = MODULAR_INPUT_1.map(|c| lv[c]);
let add_input = pol_add_ext_circuit(builder, input0, input1);
let mul_input = pol_mul_wide_ext_circuit(builder, input0, input1);
let mod_input = pol_extend_ext_circuit(builder, input0);
for (input, &filter) in [
(&add_input, &lv[columns::IS_ADDMOD]),
(&mul_input, &lv[columns::IS_MULMOD]),
(&mod_input, &lv[columns::IS_MOD]),
] {
let mut constr_poly_copy = constr_poly;
pol_sub_assign_ext_circuit(builder, &mut constr_poly_copy, input);
for &c in constr_poly_copy.iter() {
let t = builder.mul_extension(filter, c);
yield_constr.constraint(builder, t);
}
}
}
#[cfg(test)]
mod tests {
use itertools::izip;
use plonky2::field::goldilocks_field::GoldilocksField;
use plonky2::field::types::Field;
use rand::{Rng, SeedableRng};
use rand_chacha::ChaCha8Rng;
use super::*;
use crate::arithmetic::columns::NUM_ARITH_COLUMNS;
use crate::constraint_consumer::ConstraintConsumer;
const N_RND_TESTS: usize = 1000;
// TODO: Should be able to refactor this test to apply to all operations.
#[test]
fn generate_eval_consistency_not_modular() {
type F = GoldilocksField;
let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25);
let mut lv = [F::default(); NUM_ARITH_COLUMNS].map(|_| F::rand_from_rng(&mut rng));
// if `IS_ADDMOD == 0`, then the constraints should be met even
// if all values are garbage.
lv[IS_ADDMOD] = F::ZERO;
lv[IS_MULMOD] = F::ZERO;
lv[IS_MOD] = F::ZERO;
let mut constraint_consumer = ConstraintConsumer::new(
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
GoldilocksField::ONE,
GoldilocksField::ONE,
GoldilocksField::ONE,
);
eval_packed_generic(&lv, &mut constraint_consumer);
for &acc in &constraint_consumer.constraint_accs {
assert_eq!(acc, GoldilocksField::ZERO);
}
}
#[test]
fn generate_eval_consistency() {
type F = GoldilocksField;
let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25);
let mut lv = [F::default(); NUM_ARITH_COLUMNS].map(|_| F::rand_from_rng(&mut rng));
for op_filter in [IS_ADDMOD, IS_MOD, IS_MULMOD] {
// Reset operation columns, then select one
lv[IS_ADDMOD] = F::ZERO;
lv[IS_MULMOD] = F::ZERO;
lv[IS_MOD] = F::ZERO;
lv[op_filter] = F::ONE;
for i in 0..N_RND_TESTS {
// set inputs to random values
for (&ai, &bi, &mi) in izip!(
MODULAR_INPUT_0.iter(),
MODULAR_INPUT_1.iter(),
MODULAR_MODULUS.iter()
) {
lv[ai] = F::from_canonical_u16(rng.gen());
lv[bi] = F::from_canonical_u16(rng.gen());
lv[mi] = F::from_canonical_u16(rng.gen());
}
// For the second half of the tests, set the top 16 -
// start digits of the modulus to zero so it is much
// smaller than the inputs.
if i > N_RND_TESTS / 2 {
// 1 <= start < N_LIMBS
let start = (rng.gen::<usize>() % (N_LIMBS - 1)) + 1;
for &mi in &MODULAR_MODULUS[start..N_LIMBS] {
lv[mi] = F::ZERO;
}
}
generate(&mut lv, op_filter);
let mut constraint_consumer = ConstraintConsumer::new(
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
GoldilocksField::ONE,
GoldilocksField::ONE,
GoldilocksField::ONE,
);
eval_packed_generic(&lv, &mut constraint_consumer);
for &acc in &constraint_consumer.constraint_accs {
assert_eq!(acc, GoldilocksField::ZERO);
}
}
}
}
#[test]
fn zero_modulus() {
type F = GoldilocksField;
let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25);
let mut lv = [F::default(); NUM_ARITH_COLUMNS].map(|_| F::rand_from_rng(&mut rng));
for op_filter in [IS_ADDMOD, IS_MOD, IS_MULMOD] {
// Reset operation columns, then select one
lv[IS_ADDMOD] = F::ZERO;
lv[IS_MULMOD] = F::ZERO;
lv[IS_MOD] = F::ZERO;
lv[op_filter] = F::ONE;
for _i in 0..N_RND_TESTS {
// set inputs to random values and the modulus to zero;
// the output is defined to be zero when modulus is zero.
for (&ai, &bi, &mi) in izip!(
MODULAR_INPUT_0.iter(),
MODULAR_INPUT_1.iter(),
MODULAR_MODULUS.iter()
) {
lv[ai] = F::from_canonical_u16(rng.gen());
lv[bi] = F::from_canonical_u16(rng.gen());
lv[mi] = F::ZERO;
}
generate(&mut lv, op_filter);
// check that the correct output was generated
assert!(MODULAR_OUTPUT.iter().all(|&oi| lv[oi] == F::ZERO));
let mut constraint_consumer = ConstraintConsumer::new(
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
GoldilocksField::ONE,
GoldilocksField::ONE,
GoldilocksField::ONE,
);
eval_packed_generic(&lv, &mut constraint_consumer);
assert!(constraint_consumer
.constraint_accs
.iter()
.all(|&acc| acc == F::ZERO));
// Corrupt one output limb by setting it to a non-zero value
let random_oi = MODULAR_OUTPUT[rng.gen::<usize>() % N_LIMBS];
lv[random_oi] = F::from_canonical_u16(rng.gen_range(1..u16::MAX));
eval_packed_generic(&lv, &mut constraint_consumer);
// Check that at least one of the constraints was non-zero
assert!(constraint_consumer
.constraint_accs
.iter()
.any(|&acc| acc != F::ZERO));
}
}
}
}