mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-02 13:53:07 +00:00
Modular operations for the EVM arithmetic unit (#755)
* First draft of 256-bit addition. * Update comment. * cargo fmt * Rename addition evaluation file. * Port ALU logic from SZ. * Give a name to some magic numbers. * `addition.rs` -> `add.rs`; fix carry propagation in add; impl sub. * Clippy. * Combine hi and lo parts of the output. * Implement MUL. * Suppress Clippy's attempt to make my code even harder to read. * Next draft of MUL. * Make all limbs (i.e. input and output) 16-bits. * Tidying. * Use iterators instead of building arrays. * Documentation. * Clippy is wrong; also cargo fmt. * Un-refactor equality checking, since it was wrong for sub. * Daniel comments. * Daniel comments. * Rename folder 'alu' -> 'arithmetic'. * Rename file. * Finish changing name ALU -> Arithmetic Unit. * Finish removing dependency on array_zip feature. * Remove operations that will be handled elsewhere. * Rename var; tidy up. * Clean up columns; mark places where range-checks need to be done. * Import all names in 'columns' to reduce verbiage. * cargo fmt * Fix aux_in calculation in mul. * Remove redundant 'allow's; more precise range-check size. * Document functions. * Document MUL instruction verification technique. * Initial tests for ADD. * Minor test fixes; add test for SUB. * Fix bugs in generate functions. * Fix SUB verification; refactor equality verification. * cargo fmt * Add test for MUL and fix some bugs. * Update doc. * Quiet incorrect clippy error. * Initial implementation of ADDMOD and MOD. * Fixes to addmod. * Update doc. * Do 1000 random tests instead of just 1. * Documentation fix. * Working version of ADDMOD. * Working version of MOD. * Name magic number; do multiple MUL tests. * Add code and test for special case; add some docs. * Fix spelling mistake. * Simplify asserts. * Tidy comment. * Remove unused module. * cargo fmt * Check that output is reduced. * Add conversion of canonical `i64` to a `Field64`. * Handle zero modulus within degree constraint. * cargo fmt * Fix some comments. * Check that the top half of the product is zero! * Start of refactor. * Refactoring. * Remove zero and reduction handling from addmod. * Refactoring; renaming; bug fixes. * Reuse intermediate calculations across all modular operations; don't negate quot poly unnecessarily. * Fix bug where last elt of q*m wasn't checked. * Refactoring. * Move circuit poly functions to utils.rs. * Rename ADDMOD stuff to MODULAR. * Rename module addmod -> modular. * Handle zero modulus. * Verify that output is reduced. * Implement recursive version of modular circuits. * clippy * Tidy up i64 -> Field conversion following Jacqui's comments. * cargo fmt * Improved documentation. * Address Jacqui's comments. * Save some gates by using builder.arithmetic_extension().
This commit is contained in:
parent
d2dcfb5816
commit
d7bb47318c
@ -16,6 +16,7 @@ hex-literal = "0.3.4"
|
||||
itertools = "0.10.3"
|
||||
keccak-hash = "0.9.0"
|
||||
log = "0.4.14"
|
||||
num = "0.4.0"
|
||||
maybe_rayon = { path = "../maybe_rayon" }
|
||||
once_cell = "1.13.0"
|
||||
pest = "2.1.3"
|
||||
|
||||
@ -165,6 +165,8 @@ mod tests {
|
||||
use crate::arithmetic::columns::NUM_ARITH_COLUMNS;
|
||||
use crate::constraint_consumer::ConstraintConsumer;
|
||||
|
||||
const N_RND_TESTS: usize = 1000;
|
||||
|
||||
// TODO: Should be able to refactor this test to apply to all operations.
|
||||
#[test]
|
||||
fn generate_eval_consistency_not_add() {
|
||||
@ -177,14 +179,14 @@ mod tests {
|
||||
// if all values are garbage.
|
||||
lv[IS_ADD] = F::ZERO;
|
||||
|
||||
let mut constrant_consumer = ConstraintConsumer::new(
|
||||
let mut constraint_consumer = ConstraintConsumer::new(
|
||||
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
);
|
||||
eval_packed_generic(&lv, &mut constrant_consumer);
|
||||
for &acc in &constrant_consumer.constraint_accs {
|
||||
eval_packed_generic(&lv, &mut constraint_consumer);
|
||||
for &acc in &constraint_consumer.constraint_accs {
|
||||
assert_eq!(acc, GoldilocksField::ZERO);
|
||||
}
|
||||
}
|
||||
@ -198,23 +200,26 @@ mod tests {
|
||||
|
||||
// set `IS_ADD == 1` and ensure all constraints are satisfied.
|
||||
lv[IS_ADD] = F::ONE;
|
||||
// set inputs to random values
|
||||
for (&ai, bi) in ADD_INPUT_0.iter().zip(ADD_INPUT_1) {
|
||||
lv[ai] = F::from_canonical_u16(rng.gen());
|
||||
lv[bi] = F::from_canonical_u16(rng.gen());
|
||||
}
|
||||
|
||||
generate(&mut lv);
|
||||
for _ in 0..N_RND_TESTS {
|
||||
// set inputs to random values
|
||||
for (&ai, bi) in ADD_INPUT_0.iter().zip(ADD_INPUT_1) {
|
||||
lv[ai] = F::from_canonical_u16(rng.gen());
|
||||
lv[bi] = F::from_canonical_u16(rng.gen());
|
||||
}
|
||||
|
||||
let mut constrant_consumer = ConstraintConsumer::new(
|
||||
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
);
|
||||
eval_packed_generic(&lv, &mut constrant_consumer);
|
||||
for &acc in &constrant_consumer.constraint_accs {
|
||||
assert_eq!(acc, GoldilocksField::ZERO);
|
||||
generate(&mut lv);
|
||||
|
||||
let mut constraint_consumer = ConstraintConsumer::new(
|
||||
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
);
|
||||
eval_packed_generic(&lv, &mut constraint_consumer);
|
||||
for &acc in &constraint_consumer.constraint_accs {
|
||||
assert_eq!(acc, GoldilocksField::ZERO);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -9,6 +9,7 @@ use plonky2::hash::hash_types::RichField;
|
||||
use crate::arithmetic::add;
|
||||
use crate::arithmetic::columns;
|
||||
use crate::arithmetic::compare;
|
||||
use crate::arithmetic::modular;
|
||||
use crate::arithmetic::mul;
|
||||
use crate::arithmetic::sub;
|
||||
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
|
||||
@ -50,6 +51,12 @@ impl<F: RichField, const D: usize> ArithmeticStark<F, D> {
|
||||
compare::generate(local_values, columns::IS_LT);
|
||||
} else if local_values[columns::IS_GT].is_one() {
|
||||
compare::generate(local_values, columns::IS_GT);
|
||||
} else if local_values[columns::IS_ADDMOD].is_one() {
|
||||
modular::generate(local_values, columns::IS_ADDMOD);
|
||||
} else if local_values[columns::IS_MULMOD].is_one() {
|
||||
modular::generate(local_values, columns::IS_MULMOD);
|
||||
} else if local_values[columns::IS_MOD].is_one() {
|
||||
modular::generate(local_values, columns::IS_MOD);
|
||||
} else {
|
||||
todo!("the requested operation has not yet been implemented");
|
||||
}
|
||||
@ -72,6 +79,7 @@ impl<F: RichField + Extendable<D>, const D: usize> Stark<F, D> for ArithmeticSta
|
||||
sub::eval_packed_generic(lv, yield_constr);
|
||||
mul::eval_packed_generic(lv, yield_constr);
|
||||
compare::eval_packed_generic(lv, yield_constr);
|
||||
modular::eval_packed_generic(lv, yield_constr);
|
||||
}
|
||||
|
||||
fn eval_ext_circuit(
|
||||
@ -85,6 +93,7 @@ impl<F: RichField + Extendable<D>, const D: usize> Stark<F, D> for ArithmeticSta
|
||||
sub::eval_ext_circuit(builder, lv, yield_constr);
|
||||
mul::eval_ext_circuit(builder, lv, yield_constr);
|
||||
compare::eval_ext_circuit(builder, lv, yield_constr);
|
||||
modular::eval_ext_circuit(builder, lv, yield_constr);
|
||||
}
|
||||
|
||||
fn constraint_degree(&self) -> usize {
|
||||
|
||||
@ -44,7 +44,7 @@ pub(crate) const ALL_OPERATIONS: [usize; 16] = [
|
||||
/// used by any arithmetic circuit, depending on which one is active
|
||||
/// this cycle. Can be increased as needed as other operations are
|
||||
/// implemented.
|
||||
const NUM_SHARED_COLS: usize = 64;
|
||||
const NUM_SHARED_COLS: usize = 144; // only need 64 for add, sub, and mul
|
||||
|
||||
const fn shared_col(i: usize) -> usize {
|
||||
assert!(i < NUM_SHARED_COLS);
|
||||
@ -64,7 +64,10 @@ const fn gen_input_cols<const N: usize>(start: usize) -> [usize; N] {
|
||||
const GENERAL_INPUT_0: [usize; N_LIMBS] = gen_input_cols::<N_LIMBS>(0);
|
||||
const GENERAL_INPUT_1: [usize; N_LIMBS] = gen_input_cols::<N_LIMBS>(N_LIMBS);
|
||||
const GENERAL_INPUT_2: [usize; N_LIMBS] = gen_input_cols::<N_LIMBS>(2 * N_LIMBS);
|
||||
const AUX_INPUT_0: [usize; N_LIMBS] = gen_input_cols::<N_LIMBS>(3 * N_LIMBS);
|
||||
const GENERAL_INPUT_3: [usize; N_LIMBS] = gen_input_cols::<N_LIMBS>(3 * N_LIMBS);
|
||||
const AUX_INPUT_0: [usize; 2 * N_LIMBS] = gen_input_cols::<{ 2 * N_LIMBS }>(4 * N_LIMBS);
|
||||
const AUX_INPUT_1: [usize; 2 * N_LIMBS] = gen_input_cols::<{ 2 * N_LIMBS }>(6 * N_LIMBS);
|
||||
const AUX_INPUT_2: [usize; N_LIMBS] = gen_input_cols::<N_LIMBS>(8 * N_LIMBS);
|
||||
|
||||
pub(crate) const ADD_INPUT_0: [usize; N_LIMBS] = GENERAL_INPUT_0;
|
||||
pub(crate) const ADD_INPUT_1: [usize; N_LIMBS] = GENERAL_INPUT_1;
|
||||
@ -77,11 +80,21 @@ pub(crate) const SUB_OUTPUT: [usize; N_LIMBS] = GENERAL_INPUT_2;
|
||||
pub(crate) const MUL_INPUT_0: [usize; N_LIMBS] = GENERAL_INPUT_0;
|
||||
pub(crate) const MUL_INPUT_1: [usize; N_LIMBS] = GENERAL_INPUT_1;
|
||||
pub(crate) const MUL_OUTPUT: [usize; N_LIMBS] = GENERAL_INPUT_2;
|
||||
pub(crate) const MUL_AUX_INPUT: [usize; N_LIMBS] = AUX_INPUT_0;
|
||||
pub(crate) const MUL_AUX_INPUT: [usize; N_LIMBS] = GENERAL_INPUT_3;
|
||||
|
||||
pub(crate) const CMP_INPUT_0: [usize; N_LIMBS] = GENERAL_INPUT_0;
|
||||
pub(crate) const CMP_INPUT_1: [usize; N_LIMBS] = GENERAL_INPUT_1;
|
||||
pub(crate) const CMP_OUTPUT: usize = GENERAL_INPUT_2[0];
|
||||
pub(crate) const CMP_AUX_INPUT: [usize; N_LIMBS] = AUX_INPUT_0;
|
||||
pub(crate) const CMP_AUX_INPUT: [usize; N_LIMBS] = GENERAL_INPUT_3;
|
||||
|
||||
pub(crate) const MODULAR_INPUT_0: [usize; N_LIMBS] = GENERAL_INPUT_0;
|
||||
pub(crate) const MODULAR_INPUT_1: [usize; N_LIMBS] = GENERAL_INPUT_1;
|
||||
pub(crate) const MODULAR_MODULUS: [usize; N_LIMBS] = GENERAL_INPUT_2;
|
||||
pub(crate) const MODULAR_OUTPUT: [usize; N_LIMBS] = GENERAL_INPUT_3;
|
||||
pub(crate) const MODULAR_QUO_INPUT: [usize; 2 * N_LIMBS] = AUX_INPUT_0;
|
||||
// NB: Last value is not used in AUX, it is used in IS_ZERO
|
||||
pub(crate) const MODULAR_AUX_INPUT: [usize; 2 * N_LIMBS] = AUX_INPUT_1;
|
||||
pub(crate) const MODULAR_MOD_IS_ZERO: usize = AUX_INPUT_1[2 * N_LIMBS - 1];
|
||||
pub(crate) const MODULAR_OUT_AUX_RED: [usize; N_LIMBS] = AUX_INPUT_2;
|
||||
|
||||
pub const NUM_ARITH_COLUMNS: usize = START_SHARED_COLS + NUM_SHARED_COLS;
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
mod add;
|
||||
mod compare;
|
||||
mod modular;
|
||||
mod mul;
|
||||
mod sub;
|
||||
mod utils;
|
||||
|
||||
593
evm/src/arithmetic/modular.rs
Normal file
593
evm/src/arithmetic/modular.rs
Normal file
@ -0,0 +1,593 @@
|
||||
//! Support for the EVM modular instructions ADDMOD, MULMOD and MOD.
|
||||
//!
|
||||
//! This crate verifies an EVM modular instruction, which takes three
|
||||
//! 256-bit inputs A, B and M, and produces a 256-bit output C satisfying
|
||||
//!
|
||||
//! C = operation(A, B) (mod M).
|
||||
//!
|
||||
//! where operation can be addition, multiplication, or just return
|
||||
//! the first argument (for MOD). Inputs A, B and M, and output C,
|
||||
//! are given as arrays of 16-bit limbs. For example, if the limbs of
|
||||
//! A are a[0]...a[15], then
|
||||
//!
|
||||
//! A = \sum_{i=0}^15 a[i] β^i,
|
||||
//!
|
||||
//! where β = 2^16 = 2^LIMB_BITS. To verify that A, B, M and C satisfy
|
||||
//! the equation we proceed as follows. Define
|
||||
//!
|
||||
//! a(x) = \sum_{i=0}^15 a[i] x^i
|
||||
//!
|
||||
//! (so A = a(β)) and similarly for b(x), m(x) and c(x). Then
|
||||
//! operation(A,B) = C (mod M) if and only if the polynomial
|
||||
//!
|
||||
//! operation(a(x), b(x)) - c(x) - m(x) * q(x)
|
||||
//!
|
||||
//! is zero when evaluated at x = β, i.e. it is divisible by (x - β).
|
||||
//! Thus exists a polynomial s such that
|
||||
//!
|
||||
//! operation(a(x), b(x)) - c(x) - m(x) * q(x) - (x - β) * s(x) == 0
|
||||
//!
|
||||
//! if and only if operation(A,B) = C (mod M). In the code below, this
|
||||
//! "constraint polynomial" is constructed in the variable
|
||||
//! `constr_poly`. It must be identically zero for the modular
|
||||
//! operation to be verified, or, equivalently, each of its
|
||||
//! coefficients must be zero. The variable names of the constituent
|
||||
//! polynomials are (writing N for N_LIMBS=16):
|
||||
//!
|
||||
//! a(x) = \sum_{i=0}^{N-1} input0[i] * β^i
|
||||
//! b(x) = \sum_{i=0}^{N-1} input1[i] * β^i
|
||||
//! c(x) = \sum_{i=0}^{N-1} output[i] * β^i
|
||||
//! m(x) = \sum_{i=0}^{N-1} modulus[i] * β^i
|
||||
//! q(x) = \sum_{i=0}^{2N-1} quot[i] * β^i
|
||||
//! s(x) = \sum_i^{2N-2} aux[i] * β^i
|
||||
//!
|
||||
//! Because A, B, M and C are 256-bit numbers, the degrees of a, b, m
|
||||
//! and c are (at most) N-1 = 15. If m = 1, then Q would be A*B which
|
||||
//! can be up to 2^512 - ε, so deg(q) can be up to 2*N-1 = 31. Note
|
||||
//! that, although for arbitrary m and q we might have deg(m*q) = 3*N-2,
|
||||
//! because the magnitude of M*Q must match that of operation(A,B), we
|
||||
//! always have deg(m*q) <= 2*N-1. Finally, in order for all the degrees
|
||||
//! to match, we have deg(s) <= 2*N-2 = 30.
|
||||
//!
|
||||
//! -*-
|
||||
//!
|
||||
//! To verify that the output is reduced, that is, output < modulus,
|
||||
//! the prover supplies the value `out_aux_red` which must satisfy
|
||||
//!
|
||||
//! output - modulus = out_aux_red + 2^256
|
||||
//!
|
||||
//! and these values are passed to the "less than" operation.
|
||||
//!
|
||||
//! -*-
|
||||
//!
|
||||
//! The EVM defines division by zero as zero. We handle this as
|
||||
//! follows:
|
||||
//!
|
||||
//! The prover supplies a binary value `mod_is_zero` which is one if
|
||||
//! the modulus is zero and zero otherwise. This is verified, then
|
||||
//! added to the modulus (this can't overflow, as modulus[0] was
|
||||
//! range-checked and mod_is_zero is 0 or 1). The rest of the
|
||||
//! calculation proceeds as if modulus was actually 1; this correctly
|
||||
//! verifies that the output is zero, as required by the standard.
|
||||
//! To summarise:
|
||||
//!
|
||||
//! - mod_is_zero is 0 or 1
|
||||
//! - if mod_is_zero is 1, then
|
||||
//! - given modulus is 0
|
||||
//! - updated modulus is 1, which forces the correct output of 0
|
||||
//! - if mod_is_zero is 0, then
|
||||
//! - given modulus can be 0 or non-zero
|
||||
//! - updated modulus is same as given
|
||||
//! - if modulus is non-zero, correct output is obtained
|
||||
//! - if modulus is 0, then the test output < modulus, checking that
|
||||
//! the output is reduced, will fail, because output is non-negative.
|
||||
|
||||
use num::{BigUint, Zero};
|
||||
use plonky2::field::extension::Extendable;
|
||||
use plonky2::field::packed::PackedField;
|
||||
use plonky2::field::types::Field;
|
||||
use plonky2::hash::hash_types::RichField;
|
||||
use plonky2::iop::ext_target::ExtensionTarget;
|
||||
use plonky2::plonk::circuit_builder::CircuitBuilder;
|
||||
|
||||
use super::columns;
|
||||
use crate::arithmetic::columns::*;
|
||||
use crate::arithmetic::compare::{eval_ext_circuit_lt, eval_packed_generic_lt};
|
||||
use crate::arithmetic::utils::*;
|
||||
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
|
||||
use crate::range_check_error;
|
||||
|
||||
/// Convert the base-2^16 representation of a number into a BigUint.
|
||||
///
|
||||
/// Given `N` unsigned 16-bit values in `limbs`, return the BigUint
|
||||
///
|
||||
/// \sum_{i=0}^{N-1} limbs[i] * β^i.
|
||||
///
|
||||
fn columns_to_biguint<const N: usize>(limbs: &[i64; N]) -> BigUint {
|
||||
const BASE: i64 = 1i64 << LIMB_BITS;
|
||||
|
||||
// Although the input type is i64, the values must always be in
|
||||
// [0, 2^16 + ε) because of the caller's range check on the inputs
|
||||
// (the ε allows us to convert calculated output, which can be
|
||||
// bigger than 2^16).
|
||||
debug_assert!(limbs.iter().all(|&x| x >= 0));
|
||||
|
||||
let mut limbs_u32 = Vec::with_capacity(N / 2 + 1);
|
||||
let mut cy = 0i64; // cy is necessary to handle ε > 0
|
||||
for i in 0..(N / 2) {
|
||||
let t = cy + limbs[2 * i] + BASE * limbs[2 * i + 1];
|
||||
limbs_u32.push(t as u32);
|
||||
cy = t >> 32;
|
||||
}
|
||||
if N & 1 != 0 {
|
||||
// If N is odd we need to add the last limb on its own
|
||||
let t = cy + limbs[N - 1];
|
||||
limbs_u32.push(t as u32);
|
||||
cy = t >> 32;
|
||||
}
|
||||
limbs_u32.push(cy as u32);
|
||||
|
||||
BigUint::from_slice(&limbs_u32)
|
||||
}
|
||||
|
||||
/// Convert a BigUint into a base-2^16 representation.
|
||||
///
|
||||
/// Given a BigUint `num`, return an array of `N` unsigned 16-bit
|
||||
/// values, say `limbs`, such that
|
||||
///
|
||||
/// num = \sum_{i=0}^{N-1} limbs[i] * β^i.
|
||||
///
|
||||
/// Note that `N` must be at least ceil(log2(num)/16) in order to be
|
||||
/// big enough to hold `num`.
|
||||
fn biguint_to_columns<const N: usize>(num: &BigUint) -> [i64; N] {
|
||||
assert!(num.bits() <= 16 * N as u64);
|
||||
let mut output = [0i64; N];
|
||||
for (i, limb) in num.iter_u32_digits().enumerate() {
|
||||
output[2 * i] = limb as u16 as i64;
|
||||
output[2 * i + 1] = (limb >> LIMB_BITS) as i64;
|
||||
}
|
||||
output
|
||||
}
|
||||
|
||||
/// Generate the output and auxiliary values for given `operation`.
|
||||
///
|
||||
/// NB: `operation` can set the higher order elements in its result to
|
||||
/// zero if they are not used.
|
||||
fn generate_modular_op<F: RichField>(
|
||||
lv: &mut [F; NUM_ARITH_COLUMNS],
|
||||
operation: fn([i64; N_LIMBS], [i64; N_LIMBS]) -> [i64; 2 * N_LIMBS - 1],
|
||||
) {
|
||||
// Inputs are all range-checked in [0, 2^16), so the "as i64"
|
||||
// conversion is safe.
|
||||
let input0_limbs = MODULAR_INPUT_0.map(|c| F::to_canonical_u64(&lv[c]) as i64);
|
||||
let input1_limbs = MODULAR_INPUT_1.map(|c| F::to_canonical_u64(&lv[c]) as i64);
|
||||
let mut modulus_limbs = MODULAR_MODULUS.map(|c| F::to_canonical_u64(&lv[c]) as i64);
|
||||
|
||||
// The use of BigUints is just to avoid having to implement
|
||||
// modular reduction.
|
||||
let mut modulus = columns_to_biguint(&modulus_limbs);
|
||||
|
||||
// constr_poly is initialised to the calculated input, and is
|
||||
// used as such for the BigUint reduction; later, other values are
|
||||
// added/subtracted, which is where its meaning as the "constraint
|
||||
// polynomial" comes in.
|
||||
let mut constr_poly = [0i64; 2 * N_LIMBS];
|
||||
constr_poly[..2 * N_LIMBS - 1].copy_from_slice(&operation(input0_limbs, input1_limbs));
|
||||
|
||||
if modulus.is_zero() {
|
||||
modulus += 1u32;
|
||||
modulus_limbs[0] += 1i64;
|
||||
lv[MODULAR_MOD_IS_ZERO] = F::ONE;
|
||||
} else {
|
||||
lv[MODULAR_MOD_IS_ZERO] = F::ZERO;
|
||||
}
|
||||
|
||||
let input = columns_to_biguint(&constr_poly);
|
||||
|
||||
// modulus != 0 here, because, if the given modulus was zero, then
|
||||
// we added 1 to it above.
|
||||
let output = &input % &modulus;
|
||||
let output_limbs = biguint_to_columns::<N_LIMBS>(&output);
|
||||
let quot = (&input - &output) / &modulus; // exact division
|
||||
let quot_limbs = biguint_to_columns::<{ 2 * N_LIMBS }>(");
|
||||
|
||||
// two_exp_256 == 2^256
|
||||
let mut two_exp_256 = BigUint::zero();
|
||||
two_exp_256.set_bit(256, true);
|
||||
// output < modulus here, so the proof requires (output - modulus) % 2^256:
|
||||
let out_aux_red = biguint_to_columns::<N_LIMBS>(&(two_exp_256 + output - modulus));
|
||||
|
||||
// constr_poly is the array of coefficients of the polynomial
|
||||
//
|
||||
// operation(a(x), b(x)) - c(x) - s(x)*m(x).
|
||||
//
|
||||
pol_sub_assign(&mut constr_poly, &output_limbs);
|
||||
let prod = pol_mul_wide2(quot_limbs, modulus_limbs);
|
||||
pol_sub_assign(&mut constr_poly, &prod[0..2 * N_LIMBS]);
|
||||
|
||||
// Higher order terms of the product must be zero for valid quot and modulus:
|
||||
debug_assert!(&prod[2 * N_LIMBS..].iter().all(|&x| x == 0i64));
|
||||
|
||||
// constr_poly must be zero when evaluated at x = β :=
|
||||
// 2^LIMB_BITS, hence it's divisible by (x - β). `aux_limbs` is
|
||||
// the result of removing that root.
|
||||
let aux_limbs = pol_remove_root_2exp::<LIMB_BITS, _>(constr_poly);
|
||||
|
||||
for deg in 0..N_LIMBS {
|
||||
lv[MODULAR_OUTPUT[deg]] = F::from_canonical_i64(output_limbs[deg]);
|
||||
lv[MODULAR_OUT_AUX_RED[deg]] = F::from_canonical_i64(out_aux_red[deg]);
|
||||
lv[MODULAR_QUO_INPUT[deg]] = F::from_canonical_i64(quot_limbs[deg]);
|
||||
lv[MODULAR_QUO_INPUT[deg + N_LIMBS]] = F::from_canonical_i64(quot_limbs[deg + N_LIMBS]);
|
||||
lv[MODULAR_AUX_INPUT[deg]] = F::from_noncanonical_i64(aux_limbs[deg]);
|
||||
// Don't overwrite MODULAR_MOD_IS_ZERO, which is at the last
|
||||
// index of MODULAR_AUX_INPUT
|
||||
if deg < N_LIMBS - 1 {
|
||||
lv[MODULAR_AUX_INPUT[deg + N_LIMBS]] =
|
||||
F::from_noncanonical_i64(aux_limbs[deg + N_LIMBS]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Generate the output and auxiliary values for modular operations.
|
||||
///
|
||||
/// `filter` must be one of `columns::IS_{ADDMOD,MULMOD,MOD}`.
|
||||
pub(crate) fn generate<F: RichField>(lv: &mut [F; NUM_ARITH_COLUMNS], filter: usize) {
|
||||
match filter {
|
||||
columns::IS_ADDMOD => generate_modular_op(lv, pol_add),
|
||||
columns::IS_MULMOD => generate_modular_op(lv, pol_mul_wide),
|
||||
columns::IS_MOD => generate_modular_op(lv, |a, _| pol_extend(a)),
|
||||
_ => panic!("generate modular operation called with unknown opcode"),
|
||||
}
|
||||
}
|
||||
|
||||
/// Build the part of the constraint polynomial that's common to all
|
||||
/// modular operations, and perform the common verifications.
|
||||
///
|
||||
/// Specifically, with the notation above, build the polynomial
|
||||
///
|
||||
/// c(x) + q(x) * m(x) + (x - β) * s(x)
|
||||
///
|
||||
/// and check consistency when m = 0, and that c is reduced.
|
||||
#[allow(clippy::needless_range_loop)]
|
||||
fn modular_constr_poly<P: PackedField>(
|
||||
lv: &[P; NUM_ARITH_COLUMNS],
|
||||
yield_constr: &mut ConstraintConsumer<P>,
|
||||
filter: P,
|
||||
) -> [P; 2 * N_LIMBS] {
|
||||
range_check_error!(MODULAR_INPUT_0, 16);
|
||||
range_check_error!(MODULAR_INPUT_1, 16);
|
||||
range_check_error!(MODULAR_MODULUS, 16);
|
||||
range_check_error!(MODULAR_QUO_INPUT, 16);
|
||||
range_check_error!(MODULAR_AUX_INPUT, 20, signed);
|
||||
range_check_error!(MODULAR_OUTPUT, 16);
|
||||
|
||||
let mut modulus = MODULAR_MODULUS.map(|c| lv[c]);
|
||||
let mod_is_zero = lv[MODULAR_MOD_IS_ZERO];
|
||||
|
||||
// Check that mod_is_zero is zero or one
|
||||
yield_constr.constraint(filter * (mod_is_zero * mod_is_zero - mod_is_zero));
|
||||
|
||||
// Check that mod_is_zero is zero if modulus is not zero (they
|
||||
// could both be zero)
|
||||
let limb_sum = modulus.into_iter().sum::<P>();
|
||||
yield_constr.constraint(filter * limb_sum * mod_is_zero);
|
||||
|
||||
// See the file documentation for why this suffices to handle
|
||||
// modulus = 0.
|
||||
modulus[0] += mod_is_zero;
|
||||
|
||||
let output = MODULAR_OUTPUT.map(|c| lv[c]);
|
||||
|
||||
// Verify that the output is reduced, i.e. output < modulus.
|
||||
let out_aux_red = MODULAR_OUT_AUX_RED.map(|c| lv[c]);
|
||||
let is_less_than = P::ONES;
|
||||
eval_packed_generic_lt(
|
||||
yield_constr,
|
||||
filter,
|
||||
output,
|
||||
modulus,
|
||||
out_aux_red,
|
||||
is_less_than,
|
||||
);
|
||||
|
||||
// prod = q(x) * m(x)
|
||||
let quot = MODULAR_QUO_INPUT.map(|c| lv[c]);
|
||||
let prod = pol_mul_wide2(quot, modulus);
|
||||
// higher order terms must be zero
|
||||
for &x in prod[2 * N_LIMBS..].iter() {
|
||||
yield_constr.constraint(filter * x);
|
||||
}
|
||||
|
||||
// constr_poly = c(x) + q(x) * m(x)
|
||||
let mut constr_poly: [_; 2 * N_LIMBS] = prod[0..2 * N_LIMBS].try_into().unwrap();
|
||||
pol_add_assign(&mut constr_poly, &output);
|
||||
|
||||
// constr_poly = c(x) + q(x) * m(x) + (x - β) * s(x)
|
||||
let aux = MODULAR_AUX_INPUT.map(|c| lv[c]);
|
||||
let base = P::Scalar::from_canonical_u64(1 << LIMB_BITS);
|
||||
pol_add_assign(&mut constr_poly, &pol_adjoin_root(aux, base));
|
||||
|
||||
constr_poly
|
||||
}
|
||||
|
||||
/// Add constraints for modular operations.
|
||||
pub(crate) fn eval_packed_generic<P: PackedField>(
|
||||
lv: &[P; NUM_ARITH_COLUMNS],
|
||||
yield_constr: &mut ConstraintConsumer<P>,
|
||||
) {
|
||||
// NB: The CTL code guarantees that filter is 0 or 1, i.e. that
|
||||
// only one of the operations below is "live".
|
||||
let filter = lv[columns::IS_ADDMOD] + lv[columns::IS_MULMOD] + lv[columns::IS_MOD];
|
||||
|
||||
// constr_poly has 2*N_LIMBS limbs
|
||||
let constr_poly = modular_constr_poly(lv, yield_constr, filter);
|
||||
|
||||
let input0 = MODULAR_INPUT_0.map(|c| lv[c]);
|
||||
let input1 = MODULAR_INPUT_1.map(|c| lv[c]);
|
||||
|
||||
let add_input = pol_add(input0, input1);
|
||||
let mul_input = pol_mul_wide(input0, input1);
|
||||
let mod_input = pol_extend(input0);
|
||||
|
||||
for (input, &filter) in [
|
||||
(&add_input, &lv[columns::IS_ADDMOD]),
|
||||
(&mul_input, &lv[columns::IS_MULMOD]),
|
||||
(&mod_input, &lv[columns::IS_MOD]),
|
||||
] {
|
||||
// Need constr_poly_copy to be the first argument to
|
||||
// pol_sub_assign, since it is the longer of the two
|
||||
// arguments.
|
||||
let mut constr_poly_copy = constr_poly;
|
||||
pol_sub_assign(&mut constr_poly_copy, input);
|
||||
|
||||
// At this point constr_poly_copy holds the coefficients of
|
||||
// the polynomial
|
||||
//
|
||||
// operation(a(x), b(x)) - c(x) - q(x) * m(x) - (x - β) * s(x)
|
||||
//
|
||||
// where operation is add, mul or |a,b|->a. The modular
|
||||
// operation is valid if and only if all of those coefficients
|
||||
// are zero.
|
||||
for &c in constr_poly_copy.iter() {
|
||||
yield_constr.constraint(filter * c);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn modular_constr_poly_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
|
||||
lv: &[ExtensionTarget<D>; NUM_ARITH_COLUMNS],
|
||||
builder: &mut CircuitBuilder<F, D>,
|
||||
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
|
||||
filter: ExtensionTarget<D>,
|
||||
) -> [ExtensionTarget<D>; 2 * N_LIMBS] {
|
||||
let mut modulus = MODULAR_MODULUS.map(|c| lv[c]);
|
||||
let mod_is_zero = lv[MODULAR_MOD_IS_ZERO];
|
||||
|
||||
let t = builder.mul_sub_extension(mod_is_zero, mod_is_zero, mod_is_zero);
|
||||
let t = builder.mul_extension(filter, t);
|
||||
yield_constr.constraint(builder, t);
|
||||
|
||||
let limb_sum = builder.add_many_extension(modulus);
|
||||
let t = builder.mul_extension(limb_sum, mod_is_zero);
|
||||
let t = builder.mul_extension(filter, t);
|
||||
yield_constr.constraint(builder, t);
|
||||
|
||||
modulus[0] = builder.add_extension(modulus[0], mod_is_zero);
|
||||
|
||||
let output = MODULAR_OUTPUT.map(|c| lv[c]);
|
||||
let out_aux_red = MODULAR_OUT_AUX_RED.map(|c| lv[c]);
|
||||
let is_less_than = builder.one_extension();
|
||||
eval_ext_circuit_lt(
|
||||
builder,
|
||||
yield_constr,
|
||||
filter,
|
||||
output,
|
||||
modulus,
|
||||
out_aux_red,
|
||||
is_less_than,
|
||||
);
|
||||
|
||||
let quot = MODULAR_QUO_INPUT.map(|c| lv[c]);
|
||||
let prod = pol_mul_wide2_ext_circuit(builder, quot, modulus);
|
||||
for &x in prod[2 * N_LIMBS..].iter() {
|
||||
let t = builder.mul_extension(filter, x);
|
||||
yield_constr.constraint(builder, t);
|
||||
}
|
||||
|
||||
let mut constr_poly: [_; 2 * N_LIMBS] = prod[0..2 * N_LIMBS].try_into().unwrap();
|
||||
pol_add_assign_ext_circuit(builder, &mut constr_poly, &output);
|
||||
|
||||
let aux = MODULAR_AUX_INPUT.map(|c| lv[c]);
|
||||
let base = builder.constant_extension(F::Extension::from_canonical_u64(1u64 << LIMB_BITS));
|
||||
let t = pol_adjoin_root_ext_circuit(builder, aux, base);
|
||||
pol_add_assign_ext_circuit(builder, &mut constr_poly, &t);
|
||||
|
||||
constr_poly
|
||||
}
|
||||
|
||||
pub(crate) fn eval_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
|
||||
builder: &mut CircuitBuilder<F, D>,
|
||||
lv: &[ExtensionTarget<D>; NUM_ARITH_COLUMNS],
|
||||
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
|
||||
) {
|
||||
let filter = builder.add_many_extension([
|
||||
lv[columns::IS_ADDMOD],
|
||||
lv[columns::IS_MULMOD],
|
||||
lv[columns::IS_MOD],
|
||||
]);
|
||||
|
||||
let constr_poly = modular_constr_poly_ext_circuit(lv, builder, yield_constr, filter);
|
||||
|
||||
let input0 = MODULAR_INPUT_0.map(|c| lv[c]);
|
||||
let input1 = MODULAR_INPUT_1.map(|c| lv[c]);
|
||||
|
||||
let add_input = pol_add_ext_circuit(builder, input0, input1);
|
||||
let mul_input = pol_mul_wide_ext_circuit(builder, input0, input1);
|
||||
let mod_input = pol_extend_ext_circuit(builder, input0);
|
||||
|
||||
for (input, &filter) in [
|
||||
(&add_input, &lv[columns::IS_ADDMOD]),
|
||||
(&mul_input, &lv[columns::IS_MULMOD]),
|
||||
(&mod_input, &lv[columns::IS_MOD]),
|
||||
] {
|
||||
let mut constr_poly_copy = constr_poly;
|
||||
pol_sub_assign_ext_circuit(builder, &mut constr_poly_copy, input);
|
||||
for &c in constr_poly_copy.iter() {
|
||||
let t = builder.mul_extension(filter, c);
|
||||
yield_constr.constraint(builder, t);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use itertools::izip;
|
||||
use plonky2::field::goldilocks_field::GoldilocksField;
|
||||
use plonky2::field::types::Field;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use rand_chacha::ChaCha8Rng;
|
||||
|
||||
use super::*;
|
||||
use crate::arithmetic::columns::NUM_ARITH_COLUMNS;
|
||||
use crate::constraint_consumer::ConstraintConsumer;
|
||||
|
||||
const N_RND_TESTS: usize = 1000;
|
||||
|
||||
// TODO: Should be able to refactor this test to apply to all operations.
|
||||
#[test]
|
||||
fn generate_eval_consistency_not_modular() {
|
||||
type F = GoldilocksField;
|
||||
|
||||
let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25);
|
||||
let mut lv = [F::default(); NUM_ARITH_COLUMNS].map(|_| F::rand_from_rng(&mut rng));
|
||||
|
||||
// if `IS_ADDMOD == 0`, then the constraints should be met even
|
||||
// if all values are garbage.
|
||||
lv[IS_ADDMOD] = F::ZERO;
|
||||
lv[IS_MULMOD] = F::ZERO;
|
||||
lv[IS_MOD] = F::ZERO;
|
||||
|
||||
let mut constraint_consumer = ConstraintConsumer::new(
|
||||
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
);
|
||||
eval_packed_generic(&lv, &mut constraint_consumer);
|
||||
for &acc in &constraint_consumer.constraint_accs {
|
||||
assert_eq!(acc, GoldilocksField::ZERO);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn generate_eval_consistency() {
|
||||
type F = GoldilocksField;
|
||||
|
||||
let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25);
|
||||
let mut lv = [F::default(); NUM_ARITH_COLUMNS].map(|_| F::rand_from_rng(&mut rng));
|
||||
|
||||
for op_filter in [IS_ADDMOD, IS_MOD, IS_MULMOD] {
|
||||
// Reset operation columns, then select one
|
||||
lv[IS_ADDMOD] = F::ZERO;
|
||||
lv[IS_MULMOD] = F::ZERO;
|
||||
lv[IS_MOD] = F::ZERO;
|
||||
lv[op_filter] = F::ONE;
|
||||
|
||||
for i in 0..N_RND_TESTS {
|
||||
// set inputs to random values
|
||||
for (&ai, &bi, &mi) in izip!(
|
||||
MODULAR_INPUT_0.iter(),
|
||||
MODULAR_INPUT_1.iter(),
|
||||
MODULAR_MODULUS.iter()
|
||||
) {
|
||||
lv[ai] = F::from_canonical_u16(rng.gen());
|
||||
lv[bi] = F::from_canonical_u16(rng.gen());
|
||||
lv[mi] = F::from_canonical_u16(rng.gen());
|
||||
}
|
||||
|
||||
// For the second half of the tests, set the top 16 -
|
||||
// start digits of the modulus to zero so it is much
|
||||
// smaller than the inputs.
|
||||
if i > N_RND_TESTS / 2 {
|
||||
// 1 <= start < N_LIMBS
|
||||
let start = (rng.gen::<usize>() % (N_LIMBS - 1)) + 1;
|
||||
for &mi in &MODULAR_MODULUS[start..N_LIMBS] {
|
||||
lv[mi] = F::ZERO;
|
||||
}
|
||||
}
|
||||
|
||||
generate(&mut lv, op_filter);
|
||||
|
||||
let mut constraint_consumer = ConstraintConsumer::new(
|
||||
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
);
|
||||
eval_packed_generic(&lv, &mut constraint_consumer);
|
||||
for &acc in &constraint_consumer.constraint_accs {
|
||||
assert_eq!(acc, GoldilocksField::ZERO);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn zero_modulus() {
|
||||
type F = GoldilocksField;
|
||||
|
||||
let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25);
|
||||
let mut lv = [F::default(); NUM_ARITH_COLUMNS].map(|_| F::rand_from_rng(&mut rng));
|
||||
|
||||
for op_filter in [IS_ADDMOD, IS_MOD, IS_MULMOD] {
|
||||
// Reset operation columns, then select one
|
||||
lv[IS_ADDMOD] = F::ZERO;
|
||||
lv[IS_MULMOD] = F::ZERO;
|
||||
lv[IS_MOD] = F::ZERO;
|
||||
lv[op_filter] = F::ONE;
|
||||
|
||||
for _i in 0..N_RND_TESTS {
|
||||
// set inputs to random values and the modulus to zero;
|
||||
// the output is defined to be zero when modulus is zero.
|
||||
for (&ai, &bi, &mi) in izip!(
|
||||
MODULAR_INPUT_0.iter(),
|
||||
MODULAR_INPUT_1.iter(),
|
||||
MODULAR_MODULUS.iter()
|
||||
) {
|
||||
lv[ai] = F::from_canonical_u16(rng.gen());
|
||||
lv[bi] = F::from_canonical_u16(rng.gen());
|
||||
lv[mi] = F::ZERO;
|
||||
}
|
||||
|
||||
generate(&mut lv, op_filter);
|
||||
|
||||
// check that the correct output was generated
|
||||
assert!(MODULAR_OUTPUT.iter().all(|&oi| lv[oi] == F::ZERO));
|
||||
|
||||
let mut constraint_consumer = ConstraintConsumer::new(
|
||||
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
);
|
||||
eval_packed_generic(&lv, &mut constraint_consumer);
|
||||
assert!(constraint_consumer
|
||||
.constraint_accs
|
||||
.iter()
|
||||
.all(|&acc| acc == F::ZERO));
|
||||
|
||||
// Corrupt one output limb by setting it to a non-zero value
|
||||
let random_oi = MODULAR_OUTPUT[rng.gen::<usize>() % N_LIMBS];
|
||||
lv[random_oi] = F::from_canonical_u16(rng.gen_range(1..u16::MAX));
|
||||
|
||||
eval_packed_generic(&lv, &mut constraint_consumer);
|
||||
|
||||
// Check that at least one of the constraints was non-zero
|
||||
assert!(constraint_consumer
|
||||
.constraint_accs
|
||||
.iter()
|
||||
.any(|&acc| acc != F::ZERO));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -15,7 +15,7 @@
|
||||
//! and similarly for b(x) and c(x). Then A*B = C (mod 2^256) if and only
|
||||
//! if there exist polynomials q and m such that
|
||||
//!
|
||||
//! a(x)*b(x) - c(x) - m(x)*x^16 - (x - β)*q(x) == 0.
|
||||
//! a(x)*b(x) - c(x) - m(x)*x^16 - (β - x)*q(x) == 0.
|
||||
//!
|
||||
//! Because A, B and C are 256-bit numbers, the degrees of a, b and c
|
||||
//! are (at most) 15. Thus deg(a*b) <= 30, so deg(m) <= 14 and deg(q)
|
||||
@ -24,7 +24,7 @@
|
||||
//! them evaluating at β gives a factor of β^16 = 2^256 which is 0.
|
||||
//!
|
||||
//! Hence, to verify the equality, we don't need m(x) at all, and we
|
||||
//! only need to know q(x) up to degree 14 (so that (x-β)*q(x) has
|
||||
//! only need to know q(x) up to degree 14 (so that (β - x)*q(x) has
|
||||
//! degree 15). On the other hand, the coefficients of q(x) can be as
|
||||
//! large as 16*(β-2) or 20 bits.
|
||||
|
||||
@ -35,6 +35,7 @@ use plonky2::hash::hash_types::RichField;
|
||||
use plonky2::iop::ext_target::ExtensionTarget;
|
||||
|
||||
use crate::arithmetic::columns::*;
|
||||
use crate::arithmetic::utils::{pol_mul_lo, pol_sub_assign};
|
||||
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
|
||||
use crate::range_check_error;
|
||||
|
||||
@ -48,26 +49,17 @@ pub fn generate<F: RichField>(lv: &mut [F; NUM_ARITH_COLUMNS]) {
|
||||
let mut aux_in_limbs = [0u64; N_LIMBS];
|
||||
let mut output_limbs = [0u64; N_LIMBS];
|
||||
|
||||
let mut unreduced_prod = [0u64; N_LIMBS];
|
||||
|
||||
// Column-wise pen-and-paper long multiplication on 16-bit limbs.
|
||||
// We have heaps of space at the top of each limb, so by
|
||||
// calculating column-wise (instead of the usual row-wise) we
|
||||
// avoid a bunch of carry propagation handling (at the expense of
|
||||
// slightly worse cache coherency), and it makes it easy to
|
||||
// calculate the coefficients of a(x)*b(x) (in unreduced_prod).
|
||||
// First calculate the coefficients of a(x)*b(x) (in unreduced_prod),
|
||||
// then do carry propagation to obtain C = c(β) = a(β)*b(β).
|
||||
let mut cy = 0u64;
|
||||
let mut unreduced_prod = pol_mul_lo(input0_limbs, input1_limbs);
|
||||
for col in 0..N_LIMBS {
|
||||
for i in 0..=col {
|
||||
// Invariant: i + j = col
|
||||
let j = col - i;
|
||||
let ai_x_bj = input0_limbs[i] * input1_limbs[j];
|
||||
unreduced_prod[col] += ai_x_bj;
|
||||
}
|
||||
let t = unreduced_prod[col] + cy;
|
||||
cy = t >> LIMB_BITS;
|
||||
output_limbs[col] = t & MASK;
|
||||
}
|
||||
|
||||
// In principle, the last cy could be dropped because this is
|
||||
// multiplication modulo 2^256. However, we need it below for
|
||||
// aux_in_limbs to handle the fact that unreduced_prod will
|
||||
@ -76,23 +68,22 @@ pub fn generate<F: RichField>(lv: &mut [F; NUM_ARITH_COLUMNS]) {
|
||||
for (&c, output_limb) in MUL_OUTPUT.iter().zip(output_limbs) {
|
||||
lv[c] = F::from_canonical_u64(output_limb);
|
||||
}
|
||||
for deg in 0..N_LIMBS {
|
||||
// deg'th element <- a*b - c
|
||||
unreduced_prod[deg] -= output_limbs[deg];
|
||||
}
|
||||
pol_sub_assign(&mut unreduced_prod, &output_limbs);
|
||||
|
||||
// unreduced_prod is the coefficients of the polynomial a(x)*b(x) - c(x).
|
||||
// This must be zero when evaluated at x = B = 2^LIMB_BITS, hence it's
|
||||
// divisible by (B - x). If we write unreduced_prod as
|
||||
// This must be zero when evaluated at x = β = 2^LIMB_BITS, hence it's
|
||||
// divisible by (β - x). If we write unreduced_prod as
|
||||
//
|
||||
// a(x)*b(x) - c(x) = \sum_{i=0}^n p_i x^i
|
||||
// = (B - x) \sum_{i=0}^{n-1} q_i x^i
|
||||
// a(x)*b(x) - c(x) = \sum_{i=0}^n p_i x^i + terms of degree > n
|
||||
// = (β - x) \sum_{i=0}^{n-1} q_i x^i + terms of degree > n
|
||||
//
|
||||
// then by comparing coefficients it is easy to see that
|
||||
//
|
||||
// q_0 = p_0 / B and q_i = (p_i + q_{i-1}) / B
|
||||
// q_0 = p_0 / β and q_i = (p_i + q_{i-1}) / β
|
||||
//
|
||||
// for 0 < i < n-1 (and the divisions are exact).
|
||||
// for 0 < i < n-1 (and the divisions are exact). Because we're
|
||||
// only calculating the result modulo 2^256, we can ignore the
|
||||
// terms of degree > n = 15.
|
||||
aux_in_limbs[0] = unreduced_prod[0] >> LIMB_BITS;
|
||||
for deg in 1..N_LIMBS - 1 {
|
||||
aux_in_limbs[deg] = (unreduced_prod[deg] + aux_in_limbs[deg - 1]) >> LIMB_BITS;
|
||||
@ -122,14 +113,10 @@ pub fn eval_packed_generic<P: PackedField>(
|
||||
|
||||
// Constraint poly holds the coefficients of the polynomial that
|
||||
// must be identically zero for this multiplication to be
|
||||
// verified. It is initialised to the /negative/ of the claimed
|
||||
// output.
|
||||
let mut constr_poly = [P::ZEROS; N_LIMBS];
|
||||
|
||||
assert_eq!(constr_poly.len(), N_LIMBS);
|
||||
|
||||
// After this loop constr_poly holds the coefficients of the
|
||||
// polynomial A(x)B(x) - C(x), where A, B and C are the polynomials
|
||||
// verified.
|
||||
//
|
||||
// These two lines set constr_poly to the polynomial A(x)B(x) - C(x),
|
||||
// where A, B and C are the polynomials
|
||||
//
|
||||
// A(x) = \sum_i input0_limbs[i] * 2^LIMB_BITS
|
||||
// B(x) = \sum_i input1_limbs[i] * 2^LIMB_BITS
|
||||
@ -139,14 +126,8 @@ pub fn eval_packed_generic<P: PackedField>(
|
||||
//
|
||||
// Q(x) = \sum_i aux_limbs[i] * 2^LIMB_BITS
|
||||
//
|
||||
for col in 0..N_LIMBS {
|
||||
// Invariant: i + j = col
|
||||
for i in 0..=col {
|
||||
let j = col - i;
|
||||
constr_poly[col] += input0_limbs[i] * input1_limbs[j];
|
||||
}
|
||||
constr_poly[col] -= output_limbs[col];
|
||||
}
|
||||
let mut constr_poly = pol_mul_lo(input0_limbs, input1_limbs);
|
||||
pol_sub_assign(&mut constr_poly, &output_limbs);
|
||||
|
||||
// This subtracts (2^LIMB_BITS - x) * Q(x) from constr_poly.
|
||||
let base = P::Scalar::from_canonical_u64(1 << LIMB_BITS);
|
||||
@ -156,7 +137,7 @@ pub fn eval_packed_generic<P: PackedField>(
|
||||
}
|
||||
|
||||
// At this point constr_poly holds the coefficients of the
|
||||
// polynomial A(x)B(x) - C(x) - (x - 2^LIMB_BITS)*Q(x). The
|
||||
// polynomial A(x)B(x) - C(x) - (2^LIMB_BITS - x)*Q(x). The
|
||||
// multiplication is valid if and only if all of those
|
||||
// coefficients are zero.
|
||||
for &c in &constr_poly {
|
||||
@ -189,12 +170,20 @@ pub fn eval_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
|
||||
}
|
||||
|
||||
let base = F::from_canonical_u64(1 << LIMB_BITS);
|
||||
let t = builder.mul_const_extension(base, aux_in_limbs[0]);
|
||||
constr_poly[0] = builder.sub_extension(constr_poly[0], t);
|
||||
let one = builder.one_extension();
|
||||
// constr_poly[0] = constr_poly[0] - base * aux_in_limbs[0]
|
||||
constr_poly[0] =
|
||||
builder.arithmetic_extension(F::ONE, -base, constr_poly[0], one, aux_in_limbs[0]);
|
||||
for deg in 1..N_LIMBS {
|
||||
let t0 = builder.mul_const_extension(base, aux_in_limbs[deg]);
|
||||
let t1 = builder.sub_extension(t0, aux_in_limbs[deg - 1]);
|
||||
constr_poly[deg] = builder.sub_extension(constr_poly[deg], t1);
|
||||
// constr_poly[deg] -= (base*aux_in_limbs[deg] - aux_in_limbs[deg-1])
|
||||
let t = builder.arithmetic_extension(
|
||||
base,
|
||||
F::NEG_ONE,
|
||||
aux_in_limbs[deg],
|
||||
one,
|
||||
aux_in_limbs[deg - 1],
|
||||
);
|
||||
constr_poly[deg] = builder.sub_extension(constr_poly[deg], t);
|
||||
}
|
||||
|
||||
for &c in &constr_poly {
|
||||
@ -214,6 +203,8 @@ mod tests {
|
||||
use crate::arithmetic::columns::NUM_ARITH_COLUMNS;
|
||||
use crate::constraint_consumer::ConstraintConsumer;
|
||||
|
||||
const N_RND_TESTS: usize = 1000;
|
||||
|
||||
// TODO: Should be able to refactor this test to apply to all operations.
|
||||
#[test]
|
||||
fn generate_eval_consistency_not_mul() {
|
||||
@ -226,14 +217,14 @@ mod tests {
|
||||
// if all values are garbage.
|
||||
lv[IS_MUL] = F::ZERO;
|
||||
|
||||
let mut constrant_consumer = ConstraintConsumer::new(
|
||||
let mut constraint_consumer = ConstraintConsumer::new(
|
||||
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
);
|
||||
eval_packed_generic(&lv, &mut constrant_consumer);
|
||||
for &acc in &constrant_consumer.constraint_accs {
|
||||
eval_packed_generic(&lv, &mut constraint_consumer);
|
||||
for &acc in &constraint_consumer.constraint_accs {
|
||||
assert_eq!(acc, GoldilocksField::ZERO);
|
||||
}
|
||||
}
|
||||
@ -247,23 +238,26 @@ mod tests {
|
||||
|
||||
// set `IS_MUL == 1` and ensure all constraints are satisfied.
|
||||
lv[IS_MUL] = F::ONE;
|
||||
// set inputs to random values
|
||||
for (&ai, bi) in MUL_INPUT_0.iter().zip(MUL_INPUT_1) {
|
||||
lv[ai] = F::from_canonical_u16(rng.gen());
|
||||
lv[bi] = F::from_canonical_u16(rng.gen());
|
||||
}
|
||||
|
||||
generate(&mut lv);
|
||||
for _i in 0..N_RND_TESTS {
|
||||
// set inputs to random values
|
||||
for (&ai, bi) in MUL_INPUT_0.iter().zip(MUL_INPUT_1) {
|
||||
lv[ai] = F::from_canonical_u16(rng.gen());
|
||||
lv[bi] = F::from_canonical_u16(rng.gen());
|
||||
}
|
||||
|
||||
let mut constrant_consumer = ConstraintConsumer::new(
|
||||
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
);
|
||||
eval_packed_generic(&lv, &mut constrant_consumer);
|
||||
for &acc in &constrant_consumer.constraint_accs {
|
||||
assert_eq!(acc, GoldilocksField::ZERO);
|
||||
generate(&mut lv);
|
||||
|
||||
let mut constraint_consumer = ConstraintConsumer::new(
|
||||
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
);
|
||||
eval_packed_generic(&lv, &mut constraint_consumer);
|
||||
for &acc in &constraint_consumer.constraint_accs {
|
||||
assert_eq!(acc, GoldilocksField::ZERO);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -96,6 +96,8 @@ mod tests {
|
||||
use crate::arithmetic::columns::NUM_ARITH_COLUMNS;
|
||||
use crate::constraint_consumer::ConstraintConsumer;
|
||||
|
||||
const N_RND_TESTS: usize = 1000;
|
||||
|
||||
// TODO: Should be able to refactor this test to apply to all operations.
|
||||
#[test]
|
||||
fn generate_eval_consistency_not_sub() {
|
||||
@ -108,14 +110,14 @@ mod tests {
|
||||
// if all values are garbage.
|
||||
lv[IS_SUB] = F::ZERO;
|
||||
|
||||
let mut constrant_consumer = ConstraintConsumer::new(
|
||||
let mut constraint_consumer = ConstraintConsumer::new(
|
||||
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
);
|
||||
eval_packed_generic(&lv, &mut constrant_consumer);
|
||||
for &acc in &constrant_consumer.constraint_accs {
|
||||
eval_packed_generic(&lv, &mut constraint_consumer);
|
||||
for &acc in &constraint_consumer.constraint_accs {
|
||||
assert_eq!(acc, GoldilocksField::ZERO);
|
||||
}
|
||||
}
|
||||
@ -129,23 +131,26 @@ mod tests {
|
||||
|
||||
// set `IS_SUB == 1` and ensure all constraints are satisfied.
|
||||
lv[IS_SUB] = F::ONE;
|
||||
// set inputs to random values
|
||||
for (&ai, bi) in SUB_INPUT_0.iter().zip(SUB_INPUT_1) {
|
||||
lv[ai] = F::from_canonical_u16(rng.gen());
|
||||
lv[bi] = F::from_canonical_u16(rng.gen());
|
||||
}
|
||||
|
||||
generate(&mut lv);
|
||||
for _ in 0..N_RND_TESTS {
|
||||
// set inputs to random values
|
||||
for (&ai, bi) in SUB_INPUT_0.iter().zip(SUB_INPUT_1) {
|
||||
lv[ai] = F::from_canonical_u16(rng.gen());
|
||||
lv[bi] = F::from_canonical_u16(rng.gen());
|
||||
}
|
||||
|
||||
let mut constrant_consumer = ConstraintConsumer::new(
|
||||
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
);
|
||||
eval_packed_generic(&lv, &mut constrant_consumer);
|
||||
for &acc in &constrant_consumer.constraint_accs {
|
||||
assert_eq!(acc, GoldilocksField::ZERO);
|
||||
generate(&mut lv);
|
||||
|
||||
let mut constraint_consumer = ConstraintConsumer::new(
|
||||
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
);
|
||||
eval_packed_generic(&lv, &mut constraint_consumer);
|
||||
for &acc in &constraint_consumer.constraint_accs {
|
||||
assert_eq!(acc, GoldilocksField::ZERO);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,14 +1,28 @@
|
||||
use std::ops::{Add, AddAssign, Mul, Neg, Shr, Sub, SubAssign};
|
||||
|
||||
use log::error;
|
||||
use plonky2::field::extension::Extendable;
|
||||
use plonky2::hash::hash_types::RichField;
|
||||
use plonky2::iop::ext_target::ExtensionTarget;
|
||||
use plonky2::plonk::circuit_builder::CircuitBuilder;
|
||||
|
||||
use crate::arithmetic::columns::N_LIMBS;
|
||||
|
||||
/// Emit an error message regarding unchecked range assumptions.
|
||||
/// Assumes the values in `cols` are `[cols[0], cols[0] + 1, ...,
|
||||
/// cols[0] + cols.len() - 1]`.
|
||||
pub(crate) fn _range_check_error<const RC_BITS: u32>(file: &str, line: u32, cols: &[usize]) {
|
||||
pub(crate) fn _range_check_error<const RC_BITS: u32>(
|
||||
file: &str,
|
||||
line: u32,
|
||||
cols: &[usize],
|
||||
signedness: &str,
|
||||
) {
|
||||
error!(
|
||||
"{}:{}: arithmetic unit skipped {}-bit range-checks on columns {}--{}: not yet implemented",
|
||||
"{}:{}: arithmetic unit skipped {}-bit {} range-checks on columns {}--{}: not yet implemented",
|
||||
line,
|
||||
file,
|
||||
RC_BITS,
|
||||
signedness,
|
||||
cols[0],
|
||||
cols[0] + cols.len() - 1
|
||||
);
|
||||
@ -17,9 +31,297 @@ pub(crate) fn _range_check_error<const RC_BITS: u32>(file: &str, line: u32, cols
|
||||
#[macro_export]
|
||||
macro_rules! range_check_error {
|
||||
($cols:ident, $rc_bits:expr) => {
|
||||
$crate::arithmetic::utils::_range_check_error::<$rc_bits>(file!(), line!(), &$cols);
|
||||
$crate::arithmetic::utils::_range_check_error::<$rc_bits>(
|
||||
file!(),
|
||||
line!(),
|
||||
&$cols,
|
||||
"unsigned",
|
||||
);
|
||||
};
|
||||
($cols:ident, $rc_bits:expr, signed) => {
|
||||
$crate::arithmetic::utils::_range_check_error::<$rc_bits>(
|
||||
file!(),
|
||||
line!(),
|
||||
&$cols,
|
||||
"signed",
|
||||
);
|
||||
};
|
||||
([$cols:ident], $rc_bits:expr) => {
|
||||
$crate::arithmetic::utils::_range_check_error::<$rc_bits>(file!(), line!(), &[$cols]);
|
||||
$crate::arithmetic::utils::_range_check_error::<$rc_bits>(
|
||||
file!(),
|
||||
line!(),
|
||||
&[$cols],
|
||||
"unsigned",
|
||||
);
|
||||
};
|
||||
}
|
||||
|
||||
/// Return an array of `N` zeros of type T.
|
||||
pub(crate) fn pol_zero<T, const N: usize>() -> [T; N]
|
||||
where
|
||||
T: Copy + Default,
|
||||
{
|
||||
// TODO: This should really be T::zero() from num::Zero, because
|
||||
// default() doesn't guarantee to initialise to zero (though in
|
||||
// our case it always does). However I couldn't work out how to do
|
||||
// that without touching half of the entire crate because it
|
||||
// involves replacing Field::is_zero() with num::Zero::is_zero()
|
||||
// which is used everywhere. Hence Default::default() it is.
|
||||
[T::default(); N]
|
||||
}
|
||||
|
||||
/// a(x) += b(x), but must have deg(a) >= deg(b).
|
||||
pub(crate) fn pol_add_assign<T>(a: &mut [T], b: &[T])
|
||||
where
|
||||
T: AddAssign + Copy + Default,
|
||||
{
|
||||
debug_assert!(a.len() >= b.len(), "expected {} >= {}", a.len(), b.len());
|
||||
for (a_item, b_item) in a.iter_mut().zip(b) {
|
||||
*a_item += *b_item;
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn pol_add_assign_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
|
||||
builder: &mut CircuitBuilder<F, D>,
|
||||
a: &mut [ExtensionTarget<D>],
|
||||
b: &[ExtensionTarget<D>],
|
||||
) {
|
||||
debug_assert!(a.len() >= b.len(), "expected {} >= {}", a.len(), b.len());
|
||||
for (a_item, b_item) in a.iter_mut().zip(b) {
|
||||
*a_item = builder.add_extension(*a_item, *b_item);
|
||||
}
|
||||
}
|
||||
|
||||
/// Return a(x) + b(x); returned array is bigger than necessary to
|
||||
/// make the interface consistent with `pol_mul_wide`.
|
||||
pub(crate) fn pol_add<T>(a: [T; N_LIMBS], b: [T; N_LIMBS]) -> [T; 2 * N_LIMBS - 1]
|
||||
where
|
||||
T: Add<Output = T> + Copy + Default,
|
||||
{
|
||||
let mut sum = pol_zero();
|
||||
for i in 0..N_LIMBS {
|
||||
sum[i] = a[i] + b[i];
|
||||
}
|
||||
sum
|
||||
}
|
||||
|
||||
pub(crate) fn pol_add_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
|
||||
builder: &mut CircuitBuilder<F, D>,
|
||||
a: [ExtensionTarget<D>; N_LIMBS],
|
||||
b: [ExtensionTarget<D>; N_LIMBS],
|
||||
) -> [ExtensionTarget<D>; 2 * N_LIMBS - 1] {
|
||||
let zero = builder.zero_extension();
|
||||
let mut sum = [zero; 2 * N_LIMBS - 1];
|
||||
for i in 0..N_LIMBS {
|
||||
sum[i] = builder.add_extension(a[i], b[i]);
|
||||
}
|
||||
sum
|
||||
}
|
||||
|
||||
/// a(x) -= b(x), but must have deg(a) >= deg(b).
|
||||
pub(crate) fn pol_sub_assign<T>(a: &mut [T], b: &[T])
|
||||
where
|
||||
T: SubAssign + Copy,
|
||||
{
|
||||
debug_assert!(a.len() >= b.len(), "expected {} >= {}", a.len(), b.len());
|
||||
for (a_item, b_item) in a.iter_mut().zip(b) {
|
||||
*a_item -= *b_item;
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn pol_sub_assign_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
|
||||
builder: &mut CircuitBuilder<F, D>,
|
||||
a: &mut [ExtensionTarget<D>],
|
||||
b: &[ExtensionTarget<D>],
|
||||
) {
|
||||
debug_assert!(a.len() >= b.len(), "expected {} >= {}", a.len(), b.len());
|
||||
for (a_item, b_item) in a.iter_mut().zip(b) {
|
||||
*a_item = builder.sub_extension(*a_item, *b_item);
|
||||
}
|
||||
}
|
||||
|
||||
/// Given polynomials a(x) and b(x), return a(x)*b(x).
|
||||
///
|
||||
/// NB: The caller is responsible for ensuring that no undesired
|
||||
/// overflow occurs during the calculation of the coefficients of the
|
||||
/// product.
|
||||
pub(crate) fn pol_mul_wide<T>(a: [T; N_LIMBS], b: [T; N_LIMBS]) -> [T; 2 * N_LIMBS - 1]
|
||||
where
|
||||
T: AddAssign + Copy + Mul<Output = T> + Default,
|
||||
{
|
||||
let mut res = [T::default(); 2 * N_LIMBS - 1];
|
||||
for (i, &ai) in a.iter().enumerate() {
|
||||
for (j, &bj) in b.iter().enumerate() {
|
||||
res[i + j] += ai * bj;
|
||||
}
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
pub(crate) fn pol_mul_wide_ext_circuit<
|
||||
F: RichField + Extendable<D>,
|
||||
const D: usize,
|
||||
const M: usize,
|
||||
const N: usize,
|
||||
const P: usize,
|
||||
>(
|
||||
builder: &mut CircuitBuilder<F, D>,
|
||||
a: [ExtensionTarget<D>; M],
|
||||
b: [ExtensionTarget<D>; N],
|
||||
) -> [ExtensionTarget<D>; P] {
|
||||
let zero = builder.zero_extension();
|
||||
let mut res = [zero; P];
|
||||
for (i, &ai) in a.iter().enumerate() {
|
||||
for (j, &bj) in b.iter().enumerate() {
|
||||
res[i + j] = builder.mul_add_extension(ai, bj, res[i + j]);
|
||||
}
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
/// As for `pol_mul_wide` but the first argument has 2N elements and
|
||||
/// hence the result has 3N-1.
|
||||
pub(crate) fn pol_mul_wide2<T>(a: [T; 2 * N_LIMBS], b: [T; N_LIMBS]) -> [T; 3 * N_LIMBS - 1]
|
||||
where
|
||||
T: AddAssign + Copy + Mul<Output = T> + Default,
|
||||
{
|
||||
let mut res = [T::default(); 3 * N_LIMBS - 1];
|
||||
for (i, &ai) in a.iter().enumerate() {
|
||||
for (j, &bj) in b.iter().enumerate() {
|
||||
res[i + j] += ai * bj;
|
||||
}
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
pub(crate) fn pol_mul_wide2_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
|
||||
builder: &mut CircuitBuilder<F, D>,
|
||||
a: [ExtensionTarget<D>; 2 * N_LIMBS],
|
||||
b: [ExtensionTarget<D>; N_LIMBS],
|
||||
) -> [ExtensionTarget<D>; 3 * N_LIMBS - 1] {
|
||||
let zero = builder.zero_extension();
|
||||
let mut res = [zero; 3 * N_LIMBS - 1];
|
||||
for (i, &ai) in a.iter().enumerate() {
|
||||
for (j, &bj) in b.iter().enumerate() {
|
||||
res[i + j] = builder.mul_add_extension(ai, bj, res[i + j]);
|
||||
}
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
/// Given a(x) and b(x), return a(x)*b(x) mod 2^256.
|
||||
pub(crate) fn pol_mul_lo<T, const N: usize>(a: [T; N], b: [T; N]) -> [T; N]
|
||||
where
|
||||
T: AddAssign + Copy + Default + Mul<Output = T>,
|
||||
{
|
||||
let mut res = pol_zero();
|
||||
for deg in 0..N {
|
||||
// Invariant: i + j = deg
|
||||
for i in 0..=deg {
|
||||
let j = deg - i;
|
||||
res[deg] += a[i] * b[j];
|
||||
}
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
/// Adjoin M - N zeros to a, returning [a[0], a[1], ..., a[N-1], 0, 0, ..., 0].
|
||||
pub(crate) fn pol_extend<T, const N: usize, const M: usize>(a: [T; N]) -> [T; M]
|
||||
where
|
||||
T: Copy + Default,
|
||||
{
|
||||
assert_eq!(M, 2 * N - 1);
|
||||
|
||||
let mut zero_extend = pol_zero();
|
||||
zero_extend[..N].copy_from_slice(&a);
|
||||
zero_extend
|
||||
}
|
||||
|
||||
pub(crate) fn pol_extend_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
|
||||
builder: &mut CircuitBuilder<F, D>,
|
||||
a: [ExtensionTarget<D>; N_LIMBS],
|
||||
) -> [ExtensionTarget<D>; 2 * N_LIMBS - 1] {
|
||||
let zero = builder.zero_extension();
|
||||
let mut zero_extend = [zero; 2 * N_LIMBS - 1];
|
||||
|
||||
zero_extend[..N_LIMBS].copy_from_slice(&a);
|
||||
zero_extend
|
||||
}
|
||||
|
||||
/// Given polynomial a(x) = \sum_{i=0}^{2N-2} a[i] x^i and an element
|
||||
/// `root`, return b = (x - root) * a(x).
|
||||
///
|
||||
/// NB: Ignores element a[2 * N_LIMBS - 1], treating it as if it's 0.
|
||||
pub(crate) fn pol_adjoin_root<T, U>(a: [T; 2 * N_LIMBS], root: U) -> [T; 2 * N_LIMBS]
|
||||
where
|
||||
T: Add<Output = T> + Copy + Default + Mul<Output = T> + Sub<Output = T>,
|
||||
U: Copy + Mul<T, Output = T> + Neg<Output = U>,
|
||||
{
|
||||
// \sum_i res[i] x^i = (x - root) \sum_i a[i] x^i. Comparing
|
||||
// coefficients, res[0] = -root*a[0] and
|
||||
// res[i] = a[i-1] - root * a[i]
|
||||
|
||||
let mut res = [T::default(); 2 * N_LIMBS];
|
||||
res[0] = -root * a[0];
|
||||
for deg in 1..(2 * N_LIMBS - 1) {
|
||||
res[deg] = a[deg - 1] - (root * a[deg]);
|
||||
}
|
||||
// NB: We assume that a[2 * N_LIMBS - 1] = 0, so the last
|
||||
// iteration has no "* root" term.
|
||||
res[2 * N_LIMBS - 1] = a[2 * N_LIMBS - 2];
|
||||
res
|
||||
}
|
||||
|
||||
pub(crate) fn pol_adjoin_root_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
|
||||
builder: &mut CircuitBuilder<F, D>,
|
||||
a: [ExtensionTarget<D>; 2 * N_LIMBS],
|
||||
root: ExtensionTarget<D>,
|
||||
) -> [ExtensionTarget<D>; 2 * N_LIMBS] {
|
||||
let zero = builder.zero_extension();
|
||||
let mut res = [zero; 2 * N_LIMBS];
|
||||
// res[deg] = NEG_ONE * root * a[0] + ZERO * zero
|
||||
res[0] = builder.arithmetic_extension(F::NEG_ONE, F::ZERO, root, a[0], zero);
|
||||
for deg in 1..(2 * N_LIMBS - 1) {
|
||||
// res[deg] = NEG_ONE * root * a[deg] + ONE * a[deg - 1]
|
||||
res[deg] = builder.arithmetic_extension(F::NEG_ONE, F::ONE, root, a[deg], a[deg - 1]);
|
||||
}
|
||||
// NB: We assumes that a[2 * N_LIMBS - 1] = 0, so the last
|
||||
// iteration has no "* root" term.
|
||||
res[2 * N_LIMBS - 1] = a[2 * N_LIMBS - 2];
|
||||
res
|
||||
}
|
||||
|
||||
/// Given polynomial a(x) = \sum_{i=0}^{2N-1} a[i] x^i and a root of `a`
|
||||
/// of the form 2^EXP, return q(x) satisfying a(x) = (x - root) * q(x).
|
||||
///
|
||||
/// NB: We do not verify that a(2^EXP) = 0; if this doesn't hold the
|
||||
/// result is basically junk.
|
||||
///
|
||||
/// NB: The result could be returned in 2*N-1 elements, but we return
|
||||
/// 2*N and set the last element to zero since the calling code
|
||||
/// happens to require a result zero-extended to 2*N elements.
|
||||
pub(crate) fn pol_remove_root_2exp<const EXP: usize, T>(a: [T; 2 * N_LIMBS]) -> [T; 2 * N_LIMBS]
|
||||
where
|
||||
T: Copy + Default + Neg<Output = T> + Shr<usize, Output = T> + Sub<Output = T>,
|
||||
{
|
||||
// By assumption β := 2^EXP is a root of `a`, i.e. (x - β) divides
|
||||
// `a`; if we write
|
||||
//
|
||||
// a(x) = \sum_{i=0}^{2N-1} a[i] x^i
|
||||
// = (x - β) \sum_{i=0}^{2N-2} q[i] x^i
|
||||
//
|
||||
// then by comparing coefficients it is easy to see that
|
||||
//
|
||||
// q[0] = -a[0] / β and q[i] = (q[i-1] - a[i]) / β
|
||||
//
|
||||
// for 0 < i <= 2N-1 (and the divisions are exact).
|
||||
|
||||
let mut q = [T::default(); 2 * N_LIMBS];
|
||||
q[0] = -(a[0] >> EXP);
|
||||
|
||||
// NB: Last element of q is deliberately left equal to zero.
|
||||
for deg in 1..2 * N_LIMBS - 1 {
|
||||
q[deg] = (q[deg - 1] - a[deg]) >> EXP;
|
||||
}
|
||||
q
|
||||
}
|
||||
|
||||
@ -130,6 +130,18 @@ impl Field64 for GoldilocksField {
|
||||
Self(n)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn from_noncanonical_i64(n: i64) -> Self {
|
||||
Self::from_canonical_u64(if n < 0 {
|
||||
// If n < 0, then this is guaranteed to overflow since
|
||||
// both arguments have their high bit set, so the result
|
||||
// is in the canonical range.
|
||||
Self::ORDER.wrapping_add(n as u64)
|
||||
} else {
|
||||
n as u64
|
||||
})
|
||||
}
|
||||
|
||||
#[inline]
|
||||
unsafe fn add_canonical_u64(&self, rhs: u64) -> Self {
|
||||
let (res_wrapped, carry) = self.0.overflowing_add(rhs);
|
||||
|
||||
@ -490,6 +490,18 @@ pub trait Field64: Field {
|
||||
// TODO: Move to `Field`.
|
||||
fn from_noncanonical_u64(n: u64) -> Self;
|
||||
|
||||
/// Returns `n` as an element of this field.
|
||||
// TODO: Move to `Field`.
|
||||
fn from_noncanonical_i64(n: i64) -> Self;
|
||||
|
||||
/// Returns `n` as an element of this field. Assumes that `0 <= n < Self::ORDER`.
|
||||
// TODO: Move to `Field`.
|
||||
// TODO: Should probably be unsafe.
|
||||
#[inline]
|
||||
fn from_canonical_i64(n: i64) -> Self {
|
||||
Self::from_canonical_u64(n as u64)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
// TODO: Move to `Field`.
|
||||
fn add_one(&self) -> Self {
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user