Hamish Ivey-Law ce786c7a9c
Halve number of columns used by arithmetic table (#813)
* Add comments about number of columns used.

* Split modular operations across two rows.

* Fix test setup.

* Use constraint_transition() in common code.

* Ensure all inputs/outputs are on the first row.

* Fix constraint for single-row ops.

* Tidy up loop; make MODULAR_AUX_INPUT length reflect reality.
2022-12-02 17:11:31 +11:00

242 lines
8.0 KiB
Rust

use itertools::izip;
use plonky2::field::extension::Extendable;
use plonky2::field::packed::PackedField;
use plonky2::field::types::Field;
use plonky2::hash::hash_types::RichField;
use plonky2::iop::ext_target::ExtensionTarget;
use crate::arithmetic::columns::*;
use crate::arithmetic::utils::read_value_u64_limbs;
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::range_check_error;
pub(crate) fn u256_add_cc(input0: [u64; N_LIMBS], input1: [u64; N_LIMBS]) -> ([u64; N_LIMBS], u64) {
// Input and output have 16-bit limbs
let mut output = [0u64; N_LIMBS];
const MASK: u64 = (1u64 << LIMB_BITS) - 1u64;
let mut cy = 0u64;
for (i, a, b) in izip!(0.., input0, input1) {
let s = a + b + cy;
cy = s >> LIMB_BITS;
assert!(cy <= 1u64, "input limbs were larger than 16 bits");
output[i] = s & MASK;
}
(output, cy)
}
/// Given two sequences `larger` and `smaller` of equal length (not
/// checked), verifies that \sum_i larger[i] 2^(LIMB_BITS * i) ==
/// \sum_i smaller[i] 2^(LIMB_BITS * i), taking care of carry propagation.
///
/// The sequences must have been produced by `{add,sub}::eval_packed_generic()`.
pub(crate) fn eval_packed_generic_are_equal<P, I, J>(
yield_constr: &mut ConstraintConsumer<P>,
is_op: P,
larger: I,
smaller: J,
is_two_row_op: bool,
) -> P
where
P: PackedField,
I: Iterator<Item = P>,
J: Iterator<Item = P>,
{
let overflow = P::Scalar::from_canonical_u64(1 << LIMB_BITS);
let overflow_inv = overflow.inverse();
let mut cy = P::ZEROS;
for (a, b) in larger.zip(smaller) {
// t should be either 0 or 2^LIMB_BITS
let t = cy + a - b;
if is_two_row_op {
yield_constr.constraint_transition(is_op * t * (overflow - t));
} else {
yield_constr.constraint(is_op * t * (overflow - t));
}
// cy <-- 0 or 1
// NB: this is multiplication by a constant, so doesn't
// increase the degree of the constraint.
cy = t * overflow_inv;
}
cy
}
pub(crate) fn eval_ext_circuit_are_equal<F, const D: usize, I, J>(
builder: &mut plonky2::plonk::circuit_builder::CircuitBuilder<F, D>,
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
is_op: ExtensionTarget<D>,
larger: I,
smaller: J,
is_two_row_op: bool,
) -> ExtensionTarget<D>
where
F: RichField + Extendable<D>,
I: Iterator<Item = ExtensionTarget<D>>,
J: Iterator<Item = ExtensionTarget<D>>,
{
// 2^LIMB_BITS in the base field
let overflow_base = F::from_canonical_u64(1 << LIMB_BITS);
// 2^LIMB_BITS in the extension field as an ExtensionTarget
let overflow = builder.constant_extension(F::Extension::from(overflow_base));
// 2^-LIMB_BITS in the base field.
let overflow_inv = F::inverse_2exp(LIMB_BITS);
let mut cy = builder.zero_extension();
for (a, b) in larger.zip(smaller) {
// t0 = cy + a
let t0 = builder.add_extension(cy, a);
// t = t0 - b
let t = builder.sub_extension(t0, b);
// t1 = overflow - t
let t1 = builder.sub_extension(overflow, t);
// t2 = t * t1
let t2 = builder.mul_extension(t, t1);
let filtered_limb_constraint = builder.mul_extension(is_op, t2);
if is_two_row_op {
yield_constr.constraint_transition(builder, filtered_limb_constraint);
} else {
yield_constr.constraint(builder, filtered_limb_constraint);
}
cy = builder.mul_const_extension(overflow_inv, t);
}
cy
}
pub fn generate<F: RichField>(lv: &mut [F; NUM_ARITH_COLUMNS]) {
let input0 = read_value_u64_limbs(lv, ADD_INPUT_0);
let input1 = read_value_u64_limbs(lv, ADD_INPUT_1);
// Input and output have 16-bit limbs
let (output_limbs, _) = u256_add_cc(input0, input1);
lv[ADD_OUTPUT].copy_from_slice(&output_limbs.map(|c| F::from_canonical_u64(c)));
}
pub fn eval_packed_generic<P: PackedField>(
lv: &[P; NUM_ARITH_COLUMNS],
yield_constr: &mut ConstraintConsumer<P>,
) {
range_check_error!(ADD_INPUT_0, 16);
range_check_error!(ADD_INPUT_1, 16);
range_check_error!(ADD_OUTPUT, 16);
let is_add = lv[IS_ADD];
let input0_limbs = &lv[ADD_INPUT_0];
let input1_limbs = &lv[ADD_INPUT_1];
let output_limbs = &lv[ADD_OUTPUT];
// This computed output is not yet reduced; i.e. some limbs may be
// more than 16 bits.
let output_computed = input0_limbs.iter().zip(input1_limbs).map(|(&a, &b)| a + b);
eval_packed_generic_are_equal(
yield_constr,
is_add,
output_computed,
output_limbs.iter().copied(),
false,
);
}
#[allow(clippy::needless_collect)]
pub fn eval_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
builder: &mut plonky2::plonk::circuit_builder::CircuitBuilder<F, D>,
lv: &[ExtensionTarget<D>; NUM_ARITH_COLUMNS],
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
) {
let is_add = lv[IS_ADD];
let input0_limbs = &lv[ADD_INPUT_0];
let input1_limbs = &lv[ADD_INPUT_1];
let output_limbs = &lv[ADD_OUTPUT];
// Since `map` is lazy and the closure passed to it borrows
// `builder`, we can't then borrow builder again below in the call
// to `eval_ext_circuit_are_equal`. The solution is to force
// evaluation with `collect`.
let output_computed = input0_limbs
.iter()
.zip(input1_limbs)
.map(|(&a, &b)| builder.add_extension(a, b))
.collect::<Vec<ExtensionTarget<D>>>();
eval_ext_circuit_are_equal(
builder,
yield_constr,
is_add,
output_computed.into_iter(),
output_limbs.iter().copied(),
false,
);
}
#[cfg(test)]
mod tests {
use plonky2::field::goldilocks_field::GoldilocksField;
use plonky2::field::types::{Field, Sample};
use rand::{Rng, SeedableRng};
use rand_chacha::ChaCha8Rng;
use super::*;
use crate::arithmetic::columns::NUM_ARITH_COLUMNS;
use crate::constraint_consumer::ConstraintConsumer;
const N_RND_TESTS: usize = 1000;
// TODO: Should be able to refactor this test to apply to all operations.
#[test]
fn generate_eval_consistency_not_add() {
type F = GoldilocksField;
let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25);
let mut lv = [F::default(); NUM_ARITH_COLUMNS].map(|_| F::sample(&mut rng));
// if `IS_ADD == 0`, then the constraints should be met even
// if all values are garbage.
lv[IS_ADD] = F::ZERO;
let mut constraint_consumer = ConstraintConsumer::new(
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
GoldilocksField::ONE,
GoldilocksField::ONE,
GoldilocksField::ONE,
);
eval_packed_generic(&lv, &mut constraint_consumer);
for &acc in &constraint_consumer.constraint_accs {
assert_eq!(acc, GoldilocksField::ZERO);
}
}
#[test]
fn generate_eval_consistency_add() {
type F = GoldilocksField;
let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25);
let mut lv = [F::default(); NUM_ARITH_COLUMNS].map(|_| F::sample(&mut rng));
// set `IS_ADD == 1` and ensure all constraints are satisfied.
lv[IS_ADD] = F::ONE;
for _ in 0..N_RND_TESTS {
// set inputs to random values
for (ai, bi) in ADD_INPUT_0.zip(ADD_INPUT_1) {
lv[ai] = F::from_canonical_u16(rng.gen());
lv[bi] = F::from_canonical_u16(rng.gen());
}
generate(&mut lv);
let mut constraint_consumer = ConstraintConsumer::new(
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
GoldilocksField::ONE,
GoldilocksField::ONE,
GoldilocksField::ONE,
);
eval_packed_generic(&lv, &mut constraint_consumer);
for &acc in &constraint_consumer.constraint_accs {
assert_eq!(acc, GoldilocksField::ZERO);
}
}
}
}