mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-03 06:13:07 +00:00
Halve number of columns used by arithmetic table (#813)
* Add comments about number of columns used. * Split modular operations across two rows. * Fix test setup. * Use constraint_transition() in common code. * Ensure all inputs/outputs are on the first row. * Fix constraint for single-row ops. * Tidy up loop; make MODULAR_AUX_INPUT length reflect reality.
This commit is contained in:
parent
73de231e34
commit
ce786c7a9c
@ -35,6 +35,7 @@ pub(crate) fn eval_packed_generic_are_equal<P, I, J>(
|
||||
is_op: P,
|
||||
larger: I,
|
||||
smaller: J,
|
||||
is_two_row_op: bool,
|
||||
) -> P
|
||||
where
|
||||
P: PackedField,
|
||||
@ -47,7 +48,11 @@ where
|
||||
for (a, b) in larger.zip(smaller) {
|
||||
// t should be either 0 or 2^LIMB_BITS
|
||||
let t = cy + a - b;
|
||||
yield_constr.constraint(is_op * t * (overflow - t));
|
||||
if is_two_row_op {
|
||||
yield_constr.constraint_transition(is_op * t * (overflow - t));
|
||||
} else {
|
||||
yield_constr.constraint(is_op * t * (overflow - t));
|
||||
}
|
||||
// cy <-- 0 or 1
|
||||
// NB: this is multiplication by a constant, so doesn't
|
||||
// increase the degree of the constraint.
|
||||
@ -62,6 +67,7 @@ pub(crate) fn eval_ext_circuit_are_equal<F, const D: usize, I, J>(
|
||||
is_op: ExtensionTarget<D>,
|
||||
larger: I,
|
||||
smaller: J,
|
||||
is_two_row_op: bool,
|
||||
) -> ExtensionTarget<D>
|
||||
where
|
||||
F: RichField + Extendable<D>,
|
||||
@ -87,7 +93,11 @@ where
|
||||
let t2 = builder.mul_extension(t, t1);
|
||||
|
||||
let filtered_limb_constraint = builder.mul_extension(is_op, t2);
|
||||
yield_constr.constraint(builder, filtered_limb_constraint);
|
||||
if is_two_row_op {
|
||||
yield_constr.constraint_transition(builder, filtered_limb_constraint);
|
||||
} else {
|
||||
yield_constr.constraint(builder, filtered_limb_constraint);
|
||||
}
|
||||
|
||||
cy = builder.mul_const_extension(overflow_inv, t);
|
||||
}
|
||||
@ -125,6 +135,7 @@ pub fn eval_packed_generic<P: PackedField>(
|
||||
is_add,
|
||||
output_computed,
|
||||
output_limbs.iter().copied(),
|
||||
false,
|
||||
);
|
||||
}
|
||||
|
||||
@ -155,6 +166,7 @@ pub fn eval_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
|
||||
is_add,
|
||||
output_computed.into_iter(),
|
||||
output_limbs.iter().copied(),
|
||||
false,
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
@ -17,7 +17,11 @@ pub struct ArithmeticStark<F, const D: usize> {
|
||||
}
|
||||
|
||||
impl<F: RichField, const D: usize> ArithmeticStark<F, D> {
|
||||
pub fn generate(&self, local_values: &mut [F; columns::NUM_ARITH_COLUMNS]) {
|
||||
pub fn generate(
|
||||
&self,
|
||||
local_values: &mut [F; columns::NUM_ARITH_COLUMNS],
|
||||
next_values: &mut [F; columns::NUM_ARITH_COLUMNS],
|
||||
) {
|
||||
// Check that at most one operation column is "one" and that the
|
||||
// rest are "zero".
|
||||
assert_eq!(
|
||||
@ -47,17 +51,17 @@ impl<F: RichField, const D: usize> ArithmeticStark<F, D> {
|
||||
} else if local_values[columns::IS_GT].is_one() {
|
||||
compare::generate(local_values, columns::IS_GT);
|
||||
} else if local_values[columns::IS_ADDMOD].is_one() {
|
||||
modular::generate(local_values, columns::IS_ADDMOD);
|
||||
modular::generate(local_values, next_values, columns::IS_ADDMOD);
|
||||
} else if local_values[columns::IS_SUBMOD].is_one() {
|
||||
modular::generate(local_values, columns::IS_SUBMOD);
|
||||
modular::generate(local_values, next_values, columns::IS_SUBMOD);
|
||||
} else if local_values[columns::IS_MULMOD].is_one() {
|
||||
modular::generate(local_values, columns::IS_MULMOD);
|
||||
modular::generate(local_values, next_values, columns::IS_MULMOD);
|
||||
} else if local_values[columns::IS_MOD].is_one() {
|
||||
modular::generate(local_values, columns::IS_MOD);
|
||||
modular::generate(local_values, next_values, columns::IS_MOD);
|
||||
} else if local_values[columns::IS_DIV].is_one() {
|
||||
modular::generate(local_values, columns::IS_DIV);
|
||||
modular::generate(local_values, next_values, columns::IS_DIV);
|
||||
} else {
|
||||
todo!("the requested operation has not yet been implemented");
|
||||
panic!("the requested operation should not be handled by the arithmetic table");
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -74,11 +78,12 @@ impl<F: RichField + Extendable<D>, const D: usize> Stark<F, D> for ArithmeticSta
|
||||
P: PackedField<Scalar = FE>,
|
||||
{
|
||||
let lv = vars.local_values;
|
||||
let nv = vars.next_values;
|
||||
add::eval_packed_generic(lv, yield_constr);
|
||||
sub::eval_packed_generic(lv, yield_constr);
|
||||
mul::eval_packed_generic(lv, yield_constr);
|
||||
compare::eval_packed_generic(lv, yield_constr);
|
||||
modular::eval_packed_generic(lv, yield_constr);
|
||||
modular::eval_packed_generic(lv, nv, yield_constr);
|
||||
}
|
||||
|
||||
fn eval_ext_circuit(
|
||||
@ -88,11 +93,12 @@ impl<F: RichField + Extendable<D>, const D: usize> Stark<F, D> for ArithmeticSta
|
||||
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
|
||||
) {
|
||||
let lv = vars.local_values;
|
||||
let nv = vars.next_values;
|
||||
add::eval_ext_circuit(builder, lv, yield_constr);
|
||||
sub::eval_ext_circuit(builder, lv, yield_constr);
|
||||
mul::eval_ext_circuit(builder, lv, yield_constr);
|
||||
compare::eval_ext_circuit(builder, lv, yield_constr);
|
||||
modular::eval_ext_circuit(builder, lv, yield_constr);
|
||||
modular::eval_ext_circuit(builder, lv, nv, yield_constr);
|
||||
}
|
||||
|
||||
fn constraint_degree(&self) -> usize {
|
||||
|
||||
@ -12,7 +12,11 @@ const fn n_limbs() -> usize {
|
||||
if EVM_REGISTER_BITS % LIMB_BITS != 0 {
|
||||
panic!("limb size must divide EVM register size");
|
||||
}
|
||||
EVM_REGISTER_BITS / LIMB_BITS
|
||||
let n = EVM_REGISTER_BITS / LIMB_BITS;
|
||||
if n % 2 == 1 {
|
||||
panic!("number of limbs must be even");
|
||||
}
|
||||
n
|
||||
}
|
||||
|
||||
/// Number of LIMB_BITS limbs that are in on EVM register-sized number.
|
||||
@ -40,43 +44,66 @@ pub(crate) const ALL_OPERATIONS: [usize; 12] = [
|
||||
|
||||
/// Within the Arithmetic Unit, there are shared columns which can be
|
||||
/// used by any arithmetic circuit, depending on which one is active
|
||||
/// this cycle. Can be increased as needed as other operations are
|
||||
/// implemented.
|
||||
const NUM_SHARED_COLS: usize = 9 * N_LIMBS; // only need 64 for add, sub, and mul
|
||||
/// this cycle.
|
||||
///
|
||||
/// Modular arithmetic takes 9 * N_LIMBS columns which is split across
|
||||
/// two rows, the first with 5 * N_LIMBS columns and the second with
|
||||
/// 4 * N_LIMBS columns. (There are hence N_LIMBS "wasted columns" in
|
||||
/// the second row.)
|
||||
const NUM_SHARED_COLS: usize = 5 * N_LIMBS;
|
||||
|
||||
const GENERAL_INPUT_0: Range<usize> = START_SHARED_COLS..START_SHARED_COLS + N_LIMBS;
|
||||
const GENERAL_INPUT_1: Range<usize> = GENERAL_INPUT_0.end..GENERAL_INPUT_0.end + N_LIMBS;
|
||||
const GENERAL_INPUT_2: Range<usize> = GENERAL_INPUT_1.end..GENERAL_INPUT_1.end + N_LIMBS;
|
||||
const GENERAL_INPUT_3: Range<usize> = GENERAL_INPUT_2.end..GENERAL_INPUT_2.end + N_LIMBS;
|
||||
const AUX_INPUT_0: Range<usize> = GENERAL_INPUT_3.end..GENERAL_INPUT_3.end + 2 * N_LIMBS;
|
||||
const AUX_INPUT_1: Range<usize> = AUX_INPUT_0.end..AUX_INPUT_0.end + 2 * N_LIMBS;
|
||||
const AUX_INPUT_0_LO: Range<usize> = GENERAL_INPUT_3.end..GENERAL_INPUT_3.end + N_LIMBS;
|
||||
|
||||
// The auxiliary input columns overlap the general input columns
|
||||
// because they correspond to the values in the second row for modular
|
||||
// operations.
|
||||
const AUX_INPUT_0_HI: Range<usize> = START_SHARED_COLS..START_SHARED_COLS + N_LIMBS;
|
||||
const AUX_INPUT_1: Range<usize> = AUX_INPUT_0_HI.end..AUX_INPUT_0_HI.end + 2 * N_LIMBS;
|
||||
// These auxiliary input columns are awkwardly split across two rows,
|
||||
// with the first half after the general input columns and the second
|
||||
// half after the auxiliary input columns.
|
||||
const AUX_INPUT_2: Range<usize> = AUX_INPUT_1.end..AUX_INPUT_1.end + N_LIMBS;
|
||||
|
||||
// ADD takes 3 * N_LIMBS = 48 columns
|
||||
pub(crate) const ADD_INPUT_0: Range<usize> = GENERAL_INPUT_0;
|
||||
pub(crate) const ADD_INPUT_1: Range<usize> = GENERAL_INPUT_1;
|
||||
pub(crate) const ADD_OUTPUT: Range<usize> = GENERAL_INPUT_2;
|
||||
|
||||
// SUB takes 3 * N_LIMBS = 48 columns
|
||||
pub(crate) const SUB_INPUT_0: Range<usize> = GENERAL_INPUT_0;
|
||||
pub(crate) const SUB_INPUT_1: Range<usize> = GENERAL_INPUT_1;
|
||||
pub(crate) const SUB_OUTPUT: Range<usize> = GENERAL_INPUT_2;
|
||||
|
||||
// MUL takes 4 * N_LIMBS = 64 columns
|
||||
pub(crate) const MUL_INPUT_0: Range<usize> = GENERAL_INPUT_0;
|
||||
pub(crate) const MUL_INPUT_1: Range<usize> = GENERAL_INPUT_1;
|
||||
pub(crate) const MUL_OUTPUT: Range<usize> = GENERAL_INPUT_2;
|
||||
pub(crate) const MUL_AUX_INPUT: Range<usize> = GENERAL_INPUT_3;
|
||||
|
||||
// LT and GT take 4 * N_LIMBS = 64 columns
|
||||
pub(crate) const CMP_INPUT_0: Range<usize> = GENERAL_INPUT_0;
|
||||
pub(crate) const CMP_INPUT_1: Range<usize> = GENERAL_INPUT_1;
|
||||
pub(crate) const CMP_OUTPUT: usize = GENERAL_INPUT_2.start;
|
||||
pub(crate) const CMP_AUX_INPUT: Range<usize> = GENERAL_INPUT_3;
|
||||
|
||||
// MULMOD takes 4 * N_LIMBS + 2 * 2*N_LIMBS + N_LIMBS = 144 columns
|
||||
// but split over two rows of 80 columns and 64 columns.
|
||||
//
|
||||
// ADDMOD, SUBMOD, MOD and DIV are currently implemented in terms of
|
||||
// the general modular code, so they also take 144 columns (also split
|
||||
// over two rows).
|
||||
pub(crate) const MODULAR_INPUT_0: Range<usize> = GENERAL_INPUT_0;
|
||||
pub(crate) const MODULAR_INPUT_1: Range<usize> = GENERAL_INPUT_1;
|
||||
pub(crate) const MODULAR_MODULUS: Range<usize> = GENERAL_INPUT_2;
|
||||
pub(crate) const MODULAR_OUTPUT: Range<usize> = GENERAL_INPUT_3;
|
||||
pub(crate) const MODULAR_QUO_INPUT: Range<usize> = AUX_INPUT_0;
|
||||
pub(crate) const MODULAR_QUO_INPUT_LO: Range<usize> = AUX_INPUT_0_LO;
|
||||
// NB: Last value is not used in AUX, it is used in MOD_IS_ZERO
|
||||
pub(crate) const MODULAR_AUX_INPUT: Range<usize> = AUX_INPUT_1;
|
||||
pub(crate) const MODULAR_QUO_INPUT_HI: Range<usize> = AUX_INPUT_0_HI;
|
||||
pub(crate) const MODULAR_AUX_INPUT: Range<usize> = AUX_INPUT_1.start..AUX_INPUT_1.end - 1;
|
||||
pub(crate) const MODULAR_MOD_IS_ZERO: usize = AUX_INPUT_1.end - 1;
|
||||
pub(crate) const MODULAR_OUT_AUX_RED: Range<usize> = AUX_INPUT_2;
|
||||
|
||||
@ -85,6 +112,6 @@ pub(crate) const DIV_NUMERATOR: Range<usize> = MODULAR_INPUT_0;
|
||||
#[allow(unused)] // TODO: Will be used when hooking into the CPU
|
||||
pub(crate) const DIV_DENOMINATOR: Range<usize> = MODULAR_MODULUS;
|
||||
#[allow(unused)] // TODO: Will be used when hooking into the CPU
|
||||
pub(crate) const DIV_OUTPUT: Range<usize> = MODULAR_QUO_INPUT.start..MODULAR_QUO_INPUT.start + 16;
|
||||
pub(crate) const DIV_OUTPUT: Range<usize> = MODULAR_QUO_INPUT_LO;
|
||||
|
||||
pub const NUM_ARITH_COLUMNS: usize = START_SHARED_COLS + NUM_SHARED_COLS;
|
||||
|
||||
@ -57,16 +57,27 @@ pub(crate) fn eval_packed_generic_lt<P: PackedField>(
|
||||
input1: &[P],
|
||||
aux: &[P],
|
||||
output: P,
|
||||
is_two_row_op: bool,
|
||||
) {
|
||||
debug_assert!(input0.len() == N_LIMBS && input1.len() == N_LIMBS && aux.len() == N_LIMBS);
|
||||
|
||||
// Verify (input0 < input1) == output by providing aux such that
|
||||
// input0 - input1 == aux + output*2^256.
|
||||
let lhs_limbs = input0.iter().zip(input1).map(|(&a, &b)| a - b);
|
||||
let cy = eval_packed_generic_are_equal(yield_constr, is_op, aux.iter().copied(), lhs_limbs);
|
||||
let cy = eval_packed_generic_are_equal(
|
||||
yield_constr,
|
||||
is_op,
|
||||
aux.iter().copied(),
|
||||
lhs_limbs,
|
||||
is_two_row_op,
|
||||
);
|
||||
// We don't need to check that cy is 0 or 1, since output has
|
||||
// already been checked to be 0 or 1.
|
||||
yield_constr.constraint(is_op * (cy - output));
|
||||
if is_two_row_op {
|
||||
yield_constr.constraint_transition(is_op * (cy - output));
|
||||
} else {
|
||||
yield_constr.constraint(is_op * (cy - output));
|
||||
}
|
||||
}
|
||||
|
||||
pub fn eval_packed_generic<P: PackedField>(
|
||||
@ -88,8 +99,8 @@ pub fn eval_packed_generic<P: PackedField>(
|
||||
let is_cmp = is_lt + is_gt;
|
||||
eval_packed_generic_check_is_one_bit(yield_constr, is_cmp, output);
|
||||
|
||||
eval_packed_generic_lt(yield_constr, is_lt, input0, input1, aux, output);
|
||||
eval_packed_generic_lt(yield_constr, is_gt, input1, input0, aux, output);
|
||||
eval_packed_generic_lt(yield_constr, is_lt, input0, input1, aux, output, false);
|
||||
eval_packed_generic_lt(yield_constr, is_gt, input1, input0, aux, output, false);
|
||||
}
|
||||
|
||||
fn eval_ext_circuit_check_is_one_bit<F: RichField + Extendable<D>, const D: usize>(
|
||||
@ -112,6 +123,7 @@ pub(crate) fn eval_ext_circuit_lt<F: RichField + Extendable<D>, const D: usize>(
|
||||
input1: &[ExtensionTarget<D>],
|
||||
aux: &[ExtensionTarget<D>],
|
||||
output: ExtensionTarget<D>,
|
||||
is_two_row_op: bool,
|
||||
) {
|
||||
debug_assert!(input0.len() == N_LIMBS && input1.len() == N_LIMBS && aux.len() == N_LIMBS);
|
||||
|
||||
@ -131,10 +143,11 @@ pub(crate) fn eval_ext_circuit_lt<F: RichField + Extendable<D>, const D: usize>(
|
||||
is_op,
|
||||
aux.iter().copied(),
|
||||
lhs_limbs.into_iter(),
|
||||
is_two_row_op,
|
||||
);
|
||||
let good_output = builder.sub_extension(cy, output);
|
||||
let filter = builder.mul_extension(is_op, good_output);
|
||||
yield_constr.constraint(builder, filter);
|
||||
yield_constr.constraint_transition(builder, filter);
|
||||
}
|
||||
|
||||
pub fn eval_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
|
||||
@ -153,8 +166,26 @@ pub fn eval_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
|
||||
let is_cmp = builder.add_extension(is_lt, is_gt);
|
||||
eval_ext_circuit_check_is_one_bit(builder, yield_constr, is_cmp, output);
|
||||
|
||||
eval_ext_circuit_lt(builder, yield_constr, is_lt, input0, input1, aux, output);
|
||||
eval_ext_circuit_lt(builder, yield_constr, is_gt, input1, input0, aux, output);
|
||||
eval_ext_circuit_lt(
|
||||
builder,
|
||||
yield_constr,
|
||||
is_lt,
|
||||
input0,
|
||||
input1,
|
||||
aux,
|
||||
output,
|
||||
false,
|
||||
);
|
||||
eval_ext_circuit_lt(
|
||||
builder,
|
||||
yield_constr,
|
||||
is_gt,
|
||||
input1,
|
||||
input0,
|
||||
aux,
|
||||
output,
|
||||
false,
|
||||
);
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
|
||||
@ -86,6 +86,27 @@
|
||||
//!
|
||||
//! In the case of DIV, we do something similar, except that we "replace"
|
||||
//! the modulus with "2^256" to force the quotient to be zero.
|
||||
//!
|
||||
//! -*-
|
||||
//!
|
||||
//! NB: The implementation uses 9 * N_LIMBS = 144 columns because of
|
||||
//! the requirements of the general purpose MULMOD; since ADDMOD,
|
||||
//! SUBMOD, MOD and DIV are currently implemented in terms of the
|
||||
//! general modular code, they also take 144 columns. Possible
|
||||
//! improvements:
|
||||
//!
|
||||
//! - We could reduce the number of columns to 112 for ADDMOD, SUBMOD,
|
||||
//! etc. if they were implemented separately, so they don't pay the
|
||||
//! full cost of the general MULMOD.
|
||||
//!
|
||||
//! - All these operations could have alternative forms where the
|
||||
//! output was not guaranteed to be reduced, which is often sufficient
|
||||
//! in practice, and which would save a further 16 columns.
|
||||
//!
|
||||
//! - If the modulus is known in advance (such as for elliptic curve
|
||||
//! arithmetic), specialised handling of MULMOD in that case would
|
||||
//! only require 96 columns, or 80 if the output doesn't need to be
|
||||
//! reduced.
|
||||
|
||||
use num::bigint::Sign;
|
||||
use num::{BigInt, One, Zero};
|
||||
@ -171,11 +192,13 @@ fn bigint_to_columns<const N: usize>(num: &BigInt) -> [i64; N] {
|
||||
/// zero if they are not used.
|
||||
fn generate_modular_op<F: RichField>(
|
||||
lv: &mut [F; NUM_ARITH_COLUMNS],
|
||||
nv: &mut [F; NUM_ARITH_COLUMNS],
|
||||
filter: usize,
|
||||
operation: fn([i64; N_LIMBS], [i64; N_LIMBS]) -> [i64; 2 * N_LIMBS - 1],
|
||||
) {
|
||||
// Inputs are all range-checked in [0, 2^16), so the "as i64"
|
||||
// conversion is safe.
|
||||
|
||||
let input0_limbs = read_value_i64_limbs(lv, MODULAR_INPUT_0);
|
||||
let input1_limbs = read_value_i64_limbs(lv, MODULAR_INPUT_1);
|
||||
let mut modulus_limbs = read_value_i64_limbs(lv, MODULAR_MODULUS);
|
||||
@ -246,21 +269,38 @@ fn generate_modular_op<F: RichField>(
|
||||
let aux_limbs = pol_remove_root_2exp::<LIMB_BITS, _, { 2 * N_LIMBS }>(constr_poly);
|
||||
|
||||
lv[MODULAR_OUTPUT].copy_from_slice(&output_limbs.map(|c| F::from_canonical_i64(c)));
|
||||
lv[MODULAR_OUT_AUX_RED].copy_from_slice(&out_aux_red.map(|c| F::from_canonical_i64(c)));
|
||||
lv[MODULAR_QUO_INPUT].copy_from_slice("_limbs.map(|c| F::from_noncanonical_i64(c)));
|
||||
lv[MODULAR_AUX_INPUT].copy_from_slice(&aux_limbs.map(|c| F::from_noncanonical_i64(c)));
|
||||
lv[MODULAR_MOD_IS_ZERO] = mod_is_zero;
|
||||
|
||||
// Copy lo and hi halves of quot_limbs into their respective registers
|
||||
for (i, &lo) in MODULAR_QUO_INPUT_LO.zip("_limbs[..N_LIMBS]) {
|
||||
lv[i] = F::from_noncanonical_i64(lo);
|
||||
}
|
||||
for (i, &hi) in MODULAR_QUO_INPUT_HI.zip("_limbs[N_LIMBS..]) {
|
||||
nv[i] = F::from_noncanonical_i64(hi);
|
||||
}
|
||||
|
||||
for (i, &c) in MODULAR_AUX_INPUT.zip(&aux_limbs[..2 * N_LIMBS - 1]) {
|
||||
nv[i] = F::from_noncanonical_i64(c);
|
||||
}
|
||||
|
||||
nv[MODULAR_MOD_IS_ZERO] = mod_is_zero;
|
||||
nv[MODULAR_OUT_AUX_RED].copy_from_slice(&out_aux_red.map(|c| F::from_canonical_i64(c)));
|
||||
}
|
||||
|
||||
/// Generate the output and auxiliary values for modular operations.
|
||||
///
|
||||
/// `filter` must be one of `columns::IS_{ADDMOD,MULMOD,MOD}`.
|
||||
pub(crate) fn generate<F: RichField>(lv: &mut [F; NUM_ARITH_COLUMNS], filter: usize) {
|
||||
pub(crate) fn generate<F: RichField>(
|
||||
lv: &mut [F; NUM_ARITH_COLUMNS],
|
||||
nv: &mut [F; NUM_ARITH_COLUMNS],
|
||||
filter: usize,
|
||||
) {
|
||||
match filter {
|
||||
columns::IS_ADDMOD => generate_modular_op(lv, filter, pol_add),
|
||||
columns::IS_SUBMOD => generate_modular_op(lv, filter, pol_sub),
|
||||
columns::IS_MULMOD => generate_modular_op(lv, filter, pol_mul_wide),
|
||||
columns::IS_MOD | columns::IS_DIV => generate_modular_op(lv, filter, |a, _| pol_extend(a)),
|
||||
columns::IS_ADDMOD => generate_modular_op(lv, nv, filter, pol_add),
|
||||
columns::IS_SUBMOD => generate_modular_op(lv, nv, filter, pol_sub),
|
||||
columns::IS_MULMOD => generate_modular_op(lv, nv, filter, pol_mul_wide),
|
||||
columns::IS_MOD | columns::IS_DIV => {
|
||||
generate_modular_op(lv, nv, filter, |a, _| pol_extend(a))
|
||||
}
|
||||
_ => panic!("generate modular operation called with unknown opcode"),
|
||||
}
|
||||
}
|
||||
@ -275,26 +315,28 @@ pub(crate) fn generate<F: RichField>(lv: &mut [F; NUM_ARITH_COLUMNS], filter: us
|
||||
/// and check consistency when m = 0, and that c is reduced.
|
||||
fn modular_constr_poly<P: PackedField>(
|
||||
lv: &[P; NUM_ARITH_COLUMNS],
|
||||
nv: &[P; NUM_ARITH_COLUMNS],
|
||||
yield_constr: &mut ConstraintConsumer<P>,
|
||||
filter: P,
|
||||
) -> [P; 2 * N_LIMBS] {
|
||||
range_check_error!(MODULAR_INPUT_0, 16);
|
||||
range_check_error!(MODULAR_INPUT_1, 16);
|
||||
range_check_error!(MODULAR_MODULUS, 16);
|
||||
range_check_error!(MODULAR_QUO_INPUT, 16);
|
||||
range_check_error!(MODULAR_QUO_INPUT_LO, 16);
|
||||
range_check_error!(MODULAR_QUO_INPUT_HI, 16);
|
||||
range_check_error!(MODULAR_AUX_INPUT, 20, signed);
|
||||
range_check_error!(MODULAR_OUTPUT, 16);
|
||||
|
||||
let mut modulus = read_value::<N_LIMBS, _>(lv, MODULAR_MODULUS);
|
||||
let mod_is_zero = lv[MODULAR_MOD_IS_ZERO];
|
||||
let mod_is_zero = nv[MODULAR_MOD_IS_ZERO];
|
||||
|
||||
// Check that mod_is_zero is zero or one
|
||||
yield_constr.constraint(filter * (mod_is_zero * mod_is_zero - mod_is_zero));
|
||||
yield_constr.constraint_transition(filter * (mod_is_zero * mod_is_zero - mod_is_zero));
|
||||
|
||||
// Check that mod_is_zero is zero if modulus is not zero (they
|
||||
// could both be zero)
|
||||
let limb_sum = modulus.into_iter().sum::<P>();
|
||||
yield_constr.constraint(filter * limb_sum * mod_is_zero);
|
||||
yield_constr.constraint_transition(filter * limb_sum * mod_is_zero);
|
||||
|
||||
// See the file documentation for why this suffices to handle
|
||||
// modulus = 0.
|
||||
@ -308,8 +350,8 @@ fn modular_constr_poly<P: PackedField>(
|
||||
output[0] += mod_is_zero * lv[IS_DIV];
|
||||
|
||||
// Verify that the output is reduced, i.e. output < modulus.
|
||||
let out_aux_red = &lv[MODULAR_OUT_AUX_RED];
|
||||
// this sets is_less_than to 1 unless we get mod_is_zero when
|
||||
let out_aux_red = &nv[MODULAR_OUT_AUX_RED];
|
||||
// This sets is_less_than to 1 unless we get mod_is_zero when
|
||||
// doing a DIV; in that case, we need is_less_than=0, since the
|
||||
// function checks
|
||||
//
|
||||
@ -317,6 +359,8 @@ fn modular_constr_poly<P: PackedField>(
|
||||
//
|
||||
// and we were given output = out_aux_red
|
||||
let is_less_than = P::ONES - mod_is_zero * lv[IS_DIV];
|
||||
// NB: output and modulus in lv while out_aux_red and is_less_than
|
||||
// (via mod_is_zero) depend on nv.
|
||||
eval_packed_generic_lt(
|
||||
yield_constr,
|
||||
filter,
|
||||
@ -324,16 +368,23 @@ fn modular_constr_poly<P: PackedField>(
|
||||
&modulus,
|
||||
out_aux_red,
|
||||
is_less_than,
|
||||
true,
|
||||
);
|
||||
// restore output[0]
|
||||
output[0] -= mod_is_zero * lv[IS_DIV];
|
||||
|
||||
// prod = q(x) * m(x)
|
||||
let quot = read_value::<{ 2 * N_LIMBS }, _>(lv, MODULAR_QUO_INPUT);
|
||||
let quot = {
|
||||
let mut quot = [P::default(); 2 * N_LIMBS];
|
||||
quot[..N_LIMBS].copy_from_slice(&lv[MODULAR_QUO_INPUT_LO]);
|
||||
quot[N_LIMBS..].copy_from_slice(&nv[MODULAR_QUO_INPUT_HI]);
|
||||
quot
|
||||
};
|
||||
|
||||
let prod = pol_mul_wide2(quot, modulus);
|
||||
// higher order terms must be zero
|
||||
for &x in prod[2 * N_LIMBS..].iter() {
|
||||
yield_constr.constraint(filter * x);
|
||||
yield_constr.constraint_transition(filter * x);
|
||||
}
|
||||
|
||||
// constr_poly = c(x) + q(x) * m(x)
|
||||
@ -341,8 +392,11 @@ fn modular_constr_poly<P: PackedField>(
|
||||
pol_add_assign(&mut constr_poly, &output);
|
||||
|
||||
// constr_poly = c(x) + q(x) * m(x) + (x - β) * s(x)
|
||||
let mut aux = read_value::<{ 2 * N_LIMBS }, _>(lv, MODULAR_AUX_INPUT);
|
||||
aux[2 * N_LIMBS - 1] = P::ZEROS; // zero out the MOD_IS_ZERO flag
|
||||
let mut aux = [P::ZEROS; 2 * N_LIMBS];
|
||||
for (i, j) in MODULAR_AUX_INPUT.enumerate() {
|
||||
aux[i] = nv[j];
|
||||
}
|
||||
|
||||
let base = P::Scalar::from_canonical_u64(1 << LIMB_BITS);
|
||||
pol_add_assign(&mut constr_poly, &pol_adjoin_root(aux, base));
|
||||
|
||||
@ -352,6 +406,7 @@ fn modular_constr_poly<P: PackedField>(
|
||||
/// Add constraints for modular operations.
|
||||
pub(crate) fn eval_packed_generic<P: PackedField>(
|
||||
lv: &[P; NUM_ARITH_COLUMNS],
|
||||
nv: &[P; NUM_ARITH_COLUMNS],
|
||||
yield_constr: &mut ConstraintConsumer<P>,
|
||||
) {
|
||||
// NB: The CTL code guarantees that filter is 0 or 1, i.e. that
|
||||
@ -362,8 +417,12 @@ pub(crate) fn eval_packed_generic<P: PackedField>(
|
||||
+ lv[columns::IS_SUBMOD]
|
||||
+ lv[columns::IS_DIV];
|
||||
|
||||
// Ensure that this operation is not the last row of the table;
|
||||
// needed because we access the next row of the table in nv.
|
||||
yield_constr.constraint_last_row(filter);
|
||||
|
||||
// constr_poly has 2*N_LIMBS limbs
|
||||
let constr_poly = modular_constr_poly(lv, yield_constr, filter);
|
||||
let constr_poly = modular_constr_poly(lv, nv, yield_constr, filter);
|
||||
|
||||
let input0 = read_value(lv, MODULAR_INPUT_0);
|
||||
let input1 = read_value(lv, MODULAR_INPUT_1);
|
||||
@ -394,35 +453,36 @@ pub(crate) fn eval_packed_generic<P: PackedField>(
|
||||
// operation is valid if and only if all of those coefficients
|
||||
// are zero.
|
||||
for &c in constr_poly_copy.iter() {
|
||||
yield_constr.constraint(filter * c);
|
||||
yield_constr.constraint_transition(filter * c);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn modular_constr_poly_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
|
||||
lv: &[ExtensionTarget<D>; NUM_ARITH_COLUMNS],
|
||||
nv: &[ExtensionTarget<D>; NUM_ARITH_COLUMNS],
|
||||
builder: &mut CircuitBuilder<F, D>,
|
||||
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
|
||||
filter: ExtensionTarget<D>,
|
||||
) -> [ExtensionTarget<D>; 2 * N_LIMBS] {
|
||||
let mut modulus = read_value::<N_LIMBS, _>(lv, MODULAR_MODULUS);
|
||||
let mod_is_zero = lv[MODULAR_MOD_IS_ZERO];
|
||||
let mod_is_zero = nv[MODULAR_MOD_IS_ZERO];
|
||||
|
||||
let t = builder.mul_sub_extension(mod_is_zero, mod_is_zero, mod_is_zero);
|
||||
let t = builder.mul_extension(filter, t);
|
||||
yield_constr.constraint(builder, t);
|
||||
yield_constr.constraint_transition(builder, t);
|
||||
|
||||
let limb_sum = builder.add_many_extension(modulus);
|
||||
let t = builder.mul_extension(limb_sum, mod_is_zero);
|
||||
let t = builder.mul_extension(filter, t);
|
||||
yield_constr.constraint(builder, t);
|
||||
yield_constr.constraint_transition(builder, t);
|
||||
|
||||
modulus[0] = builder.add_extension(modulus[0], mod_is_zero);
|
||||
|
||||
let mut output = read_value::<N_LIMBS, _>(lv, MODULAR_OUTPUT);
|
||||
output[0] = builder.mul_add_extension(mod_is_zero, lv[IS_DIV], output[0]);
|
||||
|
||||
let out_aux_red = &lv[MODULAR_OUT_AUX_RED];
|
||||
let out_aux_red = &nv[MODULAR_OUT_AUX_RED];
|
||||
let one = builder.one_extension();
|
||||
let is_less_than =
|
||||
builder.arithmetic_extension(F::NEG_ONE, F::ONE, mod_is_zero, lv[IS_DIV], one);
|
||||
@ -435,22 +495,33 @@ fn modular_constr_poly_ext_circuit<F: RichField + Extendable<D>, const D: usize>
|
||||
&modulus,
|
||||
out_aux_red,
|
||||
is_less_than,
|
||||
true,
|
||||
);
|
||||
output[0] =
|
||||
builder.arithmetic_extension(F::NEG_ONE, F::ONE, mod_is_zero, lv[IS_DIV], output[0]);
|
||||
let quot = {
|
||||
let zero = builder.zero_extension();
|
||||
let mut quot = [zero; 2 * N_LIMBS];
|
||||
quot[..N_LIMBS].copy_from_slice(&lv[MODULAR_QUO_INPUT_LO]);
|
||||
quot[N_LIMBS..].copy_from_slice(&nv[MODULAR_QUO_INPUT_HI]);
|
||||
quot
|
||||
};
|
||||
|
||||
let quot = read_value::<{ 2 * N_LIMBS }, _>(lv, MODULAR_QUO_INPUT);
|
||||
let prod = pol_mul_wide2_ext_circuit(builder, quot, modulus);
|
||||
for &x in prod[2 * N_LIMBS..].iter() {
|
||||
let t = builder.mul_extension(filter, x);
|
||||
yield_constr.constraint(builder, t);
|
||||
yield_constr.constraint_transition(builder, t);
|
||||
}
|
||||
|
||||
let mut constr_poly: [_; 2 * N_LIMBS] = prod[0..2 * N_LIMBS].try_into().unwrap();
|
||||
pol_add_assign_ext_circuit(builder, &mut constr_poly, &output);
|
||||
|
||||
let mut aux = read_value::<{ 2 * N_LIMBS }, _>(lv, MODULAR_AUX_INPUT);
|
||||
aux[2 * N_LIMBS - 1] = builder.zero_extension();
|
||||
let zero = builder.zero_extension();
|
||||
let mut aux = [zero; 2 * N_LIMBS];
|
||||
for (i, j) in MODULAR_AUX_INPUT.enumerate() {
|
||||
aux[i] = nv[j];
|
||||
}
|
||||
|
||||
let base = builder.constant_extension(F::Extension::from_canonical_u64(1u64 << LIMB_BITS));
|
||||
let t = pol_adjoin_root_ext_circuit(builder, aux, base);
|
||||
pol_add_assign_ext_circuit(builder, &mut constr_poly, &t);
|
||||
@ -461,6 +532,7 @@ fn modular_constr_poly_ext_circuit<F: RichField + Extendable<D>, const D: usize>
|
||||
pub(crate) fn eval_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
|
||||
builder: &mut CircuitBuilder<F, D>,
|
||||
lv: &[ExtensionTarget<D>; NUM_ARITH_COLUMNS],
|
||||
nv: &[ExtensionTarget<D>; NUM_ARITH_COLUMNS],
|
||||
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
|
||||
) {
|
||||
let filter = builder.add_many_extension([
|
||||
@ -471,8 +543,9 @@ pub(crate) fn eval_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
|
||||
lv[columns::IS_DIV],
|
||||
]);
|
||||
|
||||
let constr_poly = modular_constr_poly_ext_circuit(lv, builder, yield_constr, filter);
|
||||
yield_constr.constraint_last_row(builder, filter);
|
||||
|
||||
let constr_poly = modular_constr_poly_ext_circuit(lv, nv, builder, yield_constr, filter);
|
||||
let input0 = read_value(lv, MODULAR_INPUT_0);
|
||||
let input1 = read_value(lv, MODULAR_INPUT_1);
|
||||
|
||||
@ -492,7 +565,7 @@ pub(crate) fn eval_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
|
||||
pol_sub_assign_ext_circuit(builder, &mut constr_poly_copy, input);
|
||||
for &c in constr_poly_copy.iter() {
|
||||
let t = builder.mul_extension(filter, c);
|
||||
yield_constr.constraint(builder, t);
|
||||
yield_constr.constraint_transition(builder, t);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -518,6 +591,7 @@ mod tests {
|
||||
|
||||
let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25);
|
||||
let mut lv = [F::default(); NUM_ARITH_COLUMNS].map(|_| F::sample(&mut rng));
|
||||
let nv = [F::default(); NUM_ARITH_COLUMNS].map(|_| F::sample(&mut rng));
|
||||
|
||||
// if `IS_ADDMOD == 0`, then the constraints should be met even
|
||||
// if all values are garbage.
|
||||
@ -533,7 +607,7 @@ mod tests {
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
);
|
||||
eval_packed_generic(&lv, &mut constraint_consumer);
|
||||
eval_packed_generic(&lv, &nv, &mut constraint_consumer);
|
||||
for &acc in &constraint_consumer.constraint_accs {
|
||||
assert_eq!(acc, GoldilocksField::ZERO);
|
||||
}
|
||||
@ -545,6 +619,7 @@ mod tests {
|
||||
|
||||
let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25);
|
||||
let mut lv = [F::default(); NUM_ARITH_COLUMNS].map(|_| F::sample(&mut rng));
|
||||
let mut nv = [F::default(); NUM_ARITH_COLUMNS].map(|_| F::sample(&mut rng));
|
||||
|
||||
for op_filter in [IS_ADDMOD, IS_DIV, IS_SUBMOD, IS_MOD, IS_MULMOD] {
|
||||
// Reset operation columns, then select one
|
||||
@ -563,9 +638,9 @@ mod tests {
|
||||
lv[mi] = F::from_canonical_u16(rng.gen());
|
||||
}
|
||||
|
||||
// For the second half of the tests, set the top 16 -
|
||||
// start digits of the modulus to zero so it is much
|
||||
// smaller than the inputs.
|
||||
// For the second half of the tests, set the top
|
||||
// 16-start digits of the modulus to zero so it is
|
||||
// much smaller than the inputs.
|
||||
if i > N_RND_TESTS / 2 {
|
||||
// 1 <= start < N_LIMBS
|
||||
let start = (rng.gen::<usize>() % (N_LIMBS - 1)) + 1;
|
||||
@ -574,15 +649,15 @@ mod tests {
|
||||
}
|
||||
}
|
||||
|
||||
generate(&mut lv, op_filter);
|
||||
generate(&mut lv, &mut nv, op_filter);
|
||||
|
||||
let mut constraint_consumer = ConstraintConsumer::new(
|
||||
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ZERO,
|
||||
GoldilocksField::ZERO,
|
||||
);
|
||||
eval_packed_generic(&lv, &mut constraint_consumer);
|
||||
eval_packed_generic(&lv, &nv, &mut constraint_consumer);
|
||||
for &acc in &constraint_consumer.constraint_accs {
|
||||
assert_eq!(acc, GoldilocksField::ZERO);
|
||||
}
|
||||
@ -596,6 +671,7 @@ mod tests {
|
||||
|
||||
let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25);
|
||||
let mut lv = [F::default(); NUM_ARITH_COLUMNS].map(|_| F::sample(&mut rng));
|
||||
let mut nv = [F::default(); NUM_ARITH_COLUMNS].map(|_| F::sample(&mut rng));
|
||||
|
||||
for op_filter in [IS_ADDMOD, IS_SUBMOD, IS_DIV, IS_MOD, IS_MULMOD] {
|
||||
// Reset operation columns, then select one
|
||||
@ -609,13 +685,14 @@ mod tests {
|
||||
for _i in 0..N_RND_TESTS {
|
||||
// set inputs to random values and the modulus to zero;
|
||||
// the output is defined to be zero when modulus is zero.
|
||||
|
||||
for (ai, bi, mi) in izip!(MODULAR_INPUT_0, MODULAR_INPUT_1, MODULAR_MODULUS) {
|
||||
lv[ai] = F::from_canonical_u16(rng.gen());
|
||||
lv[bi] = F::from_canonical_u16(rng.gen());
|
||||
lv[mi] = F::ZERO;
|
||||
}
|
||||
|
||||
generate(&mut lv, op_filter);
|
||||
generate(&mut lv, &mut nv, op_filter);
|
||||
|
||||
// check that the correct output was generated
|
||||
if op_filter == IS_DIV {
|
||||
@ -627,24 +704,25 @@ mod tests {
|
||||
let mut constraint_consumer = ConstraintConsumer::new(
|
||||
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ONE,
|
||||
GoldilocksField::ZERO,
|
||||
GoldilocksField::ZERO,
|
||||
);
|
||||
eval_packed_generic(&lv, &mut constraint_consumer);
|
||||
eval_packed_generic(&lv, &nv, &mut constraint_consumer);
|
||||
assert!(constraint_consumer
|
||||
.constraint_accs
|
||||
.iter()
|
||||
.all(|&acc| acc == F::ZERO));
|
||||
|
||||
// Corrupt one output limb by setting it to a non-zero value
|
||||
let random_oi = if op_filter == IS_DIV {
|
||||
DIV_OUTPUT.start + rng.gen::<usize>() % N_LIMBS
|
||||
if op_filter == IS_DIV {
|
||||
let random_oi = DIV_OUTPUT.start + rng.gen::<usize>() % N_LIMBS;
|
||||
lv[random_oi] = F::from_canonical_u16(rng.gen_range(1..u16::MAX));
|
||||
} else {
|
||||
MODULAR_OUTPUT.start + rng.gen::<usize>() % N_LIMBS
|
||||
let random_oi = MODULAR_OUTPUT.start + rng.gen::<usize>() % N_LIMBS;
|
||||
lv[random_oi] = F::from_canonical_u16(rng.gen_range(1..u16::MAX));
|
||||
};
|
||||
lv[random_oi] = F::from_canonical_u16(rng.gen_range(1..u16::MAX));
|
||||
|
||||
eval_packed_generic(&lv, &mut constraint_consumer);
|
||||
eval_packed_generic(&lv, &nv, &mut constraint_consumer);
|
||||
|
||||
// Check that at least one of the constraints was non-zero
|
||||
assert!(constraint_consumer
|
||||
|
||||
@ -57,6 +57,7 @@ pub fn eval_packed_generic<P: PackedField>(
|
||||
is_sub,
|
||||
output_limbs.iter().copied(),
|
||||
output_computed,
|
||||
false,
|
||||
);
|
||||
}
|
||||
|
||||
@ -87,6 +88,7 @@ pub fn eval_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
|
||||
is_sub,
|
||||
output_limbs.iter().copied(),
|
||||
output_computed.into_iter(),
|
||||
false,
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user