plonky2/src/gates/assert_le.rs
2021-11-30 17:12:13 +01:00

608 lines
22 KiB
Rust

use std::marker::PhantomData;
use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::Extendable;
use crate::field::field_types::{Field, PrimeField, RichField};
use crate::gates::gate::Gate;
use crate::iop::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
use crate::iop::target::Target;
use crate::iop::wire::Wire;
use crate::iop::witness::{PartitionWitness, Witness};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::plonk_common::{reduce_with_powers, reduce_with_powers_ext_recursive};
use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
use crate::util::{bits_u64, ceil_div_usize};
// TODO: replace/merge this gate with `ComparisonGate`.
/// A gate for checking that one value is less than or equal to another.
#[derive(Clone, Debug)]
pub struct AssertLessThanGate<F: PrimeField + Extendable<D>, const D: usize> {
pub(crate) num_bits: usize,
pub(crate) num_chunks: usize,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> AssertLessThanGate<F, D> {
pub fn new(num_bits: usize, num_chunks: usize) -> Self {
debug_assert!(num_bits < bits_u64(F::ORDER));
Self {
num_bits,
num_chunks,
_phantom: PhantomData,
}
}
pub fn chunk_bits(&self) -> usize {
ceil_div_usize(self.num_bits, self.num_chunks)
}
pub fn wire_first_input(&self) -> usize {
0
}
pub fn wire_second_input(&self) -> usize {
1
}
pub fn wire_most_significant_diff(&self) -> usize {
2
}
pub fn wire_first_chunk_val(&self, chunk: usize) -> usize {
debug_assert!(chunk < self.num_chunks);
3 + chunk
}
pub fn wire_second_chunk_val(&self, chunk: usize) -> usize {
debug_assert!(chunk < self.num_chunks);
3 + self.num_chunks + chunk
}
pub fn wire_equality_dummy(&self, chunk: usize) -> usize {
debug_assert!(chunk < self.num_chunks);
3 + 2 * self.num_chunks + chunk
}
pub fn wire_chunks_equal(&self, chunk: usize) -> usize {
debug_assert!(chunk < self.num_chunks);
3 + 3 * self.num_chunks + chunk
}
pub fn wire_intermediate_value(&self, chunk: usize) -> usize {
debug_assert!(chunk < self.num_chunks);
3 + 4 * self.num_chunks + chunk
}
}
impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for AssertLessThanGate<F, D> {
fn id(&self) -> String {
format!("{:?}<D={}>", self, D)
}
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
let mut constraints = Vec::with_capacity(self.num_constraints());
let first_input = vars.local_wires[self.wire_first_input()];
let second_input = vars.local_wires[self.wire_second_input()];
// Get chunks and assert that they match
let first_chunks: Vec<F::Extension> = (0..self.num_chunks)
.map(|i| vars.local_wires[self.wire_first_chunk_val(i)])
.collect();
let second_chunks: Vec<F::Extension> = (0..self.num_chunks)
.map(|i| vars.local_wires[self.wire_second_chunk_val(i)])
.collect();
let first_chunks_combined = reduce_with_powers(
&first_chunks,
F::Extension::from_canonical_usize(1 << self.chunk_bits()),
);
let second_chunks_combined = reduce_with_powers(
&second_chunks,
F::Extension::from_canonical_usize(1 << self.chunk_bits()),
);
constraints.push(first_chunks_combined - first_input);
constraints.push(second_chunks_combined - second_input);
let chunk_size = 1 << self.chunk_bits();
let mut most_significant_diff_so_far = F::Extension::ZERO;
for i in 0..self.num_chunks {
// Range-check the chunks to be less than `chunk_size`.
let first_product = (0..chunk_size)
.map(|x| first_chunks[i] - F::Extension::from_canonical_usize(x))
.product();
let second_product = (0..chunk_size)
.map(|x| second_chunks[i] - F::Extension::from_canonical_usize(x))
.product();
constraints.push(first_product);
constraints.push(second_product);
let difference = second_chunks[i] - first_chunks[i];
let equality_dummy = vars.local_wires[self.wire_equality_dummy(i)];
let chunks_equal = vars.local_wires[self.wire_chunks_equal(i)];
// Two constraints to assert that `chunks_equal` is valid.
constraints.push(difference * equality_dummy - (F::Extension::ONE - chunks_equal));
constraints.push(chunks_equal * difference);
// Update `most_significant_diff_so_far`.
let intermediate_value = vars.local_wires[self.wire_intermediate_value(i)];
constraints.push(intermediate_value - chunks_equal * most_significant_diff_so_far);
most_significant_diff_so_far =
intermediate_value + (F::Extension::ONE - chunks_equal) * difference;
}
let most_significant_diff = vars.local_wires[self.wire_most_significant_diff()];
constraints.push(most_significant_diff - most_significant_diff_so_far);
// Range check `most_significant_diff` to be less than `chunk_size`.
let product = (0..chunk_size)
.map(|x| most_significant_diff - F::Extension::from_canonical_usize(x))
.product();
constraints.push(product);
constraints
}
fn eval_unfiltered_base(&self, vars: EvaluationVarsBase<F>) -> Vec<F> {
let mut constraints = Vec::with_capacity(self.num_constraints());
let first_input = vars.local_wires[self.wire_first_input()];
let second_input = vars.local_wires[self.wire_second_input()];
// Get chunks and assert that they match
let first_chunks: Vec<F> = (0..self.num_chunks)
.map(|i| vars.local_wires[self.wire_first_chunk_val(i)])
.collect();
let second_chunks: Vec<F> = (0..self.num_chunks)
.map(|i| vars.local_wires[self.wire_second_chunk_val(i)])
.collect();
let first_chunks_combined = reduce_with_powers(
&first_chunks,
F::from_canonical_usize(1 << self.chunk_bits()),
);
let second_chunks_combined = reduce_with_powers(
&second_chunks,
F::from_canonical_usize(1 << self.chunk_bits()),
);
constraints.push(first_chunks_combined - first_input);
constraints.push(second_chunks_combined - second_input);
let chunk_size = 1 << self.chunk_bits();
let mut most_significant_diff_so_far = F::ZERO;
for i in 0..self.num_chunks {
// Range-check the chunks to be less than `chunk_size`.
let first_product = (0..chunk_size)
.map(|x| first_chunks[i] - F::from_canonical_usize(x))
.product();
let second_product = (0..chunk_size)
.map(|x| second_chunks[i] - F::from_canonical_usize(x))
.product();
constraints.push(first_product);
constraints.push(second_product);
let difference = second_chunks[i] - first_chunks[i];
let equality_dummy = vars.local_wires[self.wire_equality_dummy(i)];
let chunks_equal = vars.local_wires[self.wire_chunks_equal(i)];
// Two constraints to assert that `chunks_equal` is valid.
constraints.push(difference * equality_dummy - (F::ONE - chunks_equal));
constraints.push(chunks_equal * difference);
// Update `most_significant_diff_so_far`.
let intermediate_value = vars.local_wires[self.wire_intermediate_value(i)];
constraints.push(intermediate_value - chunks_equal * most_significant_diff_so_far);
most_significant_diff_so_far =
intermediate_value + (F::ONE - chunks_equal) * difference;
}
let most_significant_diff = vars.local_wires[self.wire_most_significant_diff()];
constraints.push(most_significant_diff - most_significant_diff_so_far);
// Range check `most_significant_diff` to be less than `chunk_size`.
let product = (0..chunk_size)
.map(|x| most_significant_diff - F::from_canonical_usize(x))
.product();
constraints.push(product);
constraints
}
fn eval_unfiltered_recursively(
&self,
builder: &mut CircuitBuilder<F, D>,
vars: EvaluationTargets<D>,
) -> Vec<ExtensionTarget<D>> {
let mut constraints = Vec::with_capacity(self.num_constraints());
let first_input = vars.local_wires[self.wire_first_input()];
let second_input = vars.local_wires[self.wire_second_input()];
// Get chunks and assert that they match
let first_chunks: Vec<ExtensionTarget<D>> = (0..self.num_chunks)
.map(|i| vars.local_wires[self.wire_first_chunk_val(i)])
.collect();
let second_chunks: Vec<ExtensionTarget<D>> = (0..self.num_chunks)
.map(|i| vars.local_wires[self.wire_second_chunk_val(i)])
.collect();
let chunk_base = builder.constant(F::from_canonical_usize(1 << self.chunk_bits()));
let first_chunks_combined =
reduce_with_powers_ext_recursive(builder, &first_chunks, chunk_base);
let second_chunks_combined =
reduce_with_powers_ext_recursive(builder, &second_chunks, chunk_base);
constraints.push(builder.sub_extension(first_chunks_combined, first_input));
constraints.push(builder.sub_extension(second_chunks_combined, second_input));
let chunk_size = 1 << self.chunk_bits();
let mut most_significant_diff_so_far = builder.zero_extension();
let one = builder.one_extension();
// Find the chosen chunk.
for i in 0..self.num_chunks {
// Range-check the chunks to be less than `chunk_size`.
let mut first_product = one;
let mut second_product = one;
for x in 0..chunk_size {
let x_f = builder.constant_extension(F::Extension::from_canonical_usize(x));
let first_diff = builder.sub_extension(first_chunks[i], x_f);
let second_diff = builder.sub_extension(second_chunks[i], x_f);
first_product = builder.mul_extension(first_product, first_diff);
second_product = builder.mul_extension(second_product, second_diff);
}
constraints.push(first_product);
constraints.push(second_product);
let difference = builder.sub_extension(second_chunks[i], first_chunks[i]);
let equality_dummy = vars.local_wires[self.wire_equality_dummy(i)];
let chunks_equal = vars.local_wires[self.wire_chunks_equal(i)];
// Two constraints to assert that `chunks_equal` is valid.
let diff_times_equal = builder.mul_extension(difference, equality_dummy);
let not_equal = builder.sub_extension(one, chunks_equal);
constraints.push(builder.sub_extension(diff_times_equal, not_equal));
constraints.push(builder.mul_extension(chunks_equal, difference));
// Update `most_significant_diff_so_far`.
let intermediate_value = vars.local_wires[self.wire_intermediate_value(i)];
let old_diff = builder.mul_extension(chunks_equal, most_significant_diff_so_far);
constraints.push(builder.sub_extension(intermediate_value, old_diff));
let not_equal = builder.sub_extension(one, chunks_equal);
let new_diff = builder.mul_extension(not_equal, difference);
most_significant_diff_so_far = builder.add_extension(intermediate_value, new_diff);
}
let most_significant_diff = vars.local_wires[self.wire_most_significant_diff()];
constraints
.push(builder.sub_extension(most_significant_diff, most_significant_diff_so_far));
// Range check `most_significant_diff` to be less than `chunk_size`.
let mut product = builder.one_extension();
for x in 0..chunk_size {
let x_f = builder.constant_extension(F::Extension::from_canonical_usize(x));
let diff = builder.sub_extension(most_significant_diff, x_f);
product = builder.mul_extension(product, diff);
}
constraints.push(product);
constraints
}
fn generators(
&self,
gate_index: usize,
_local_constants: &[F],
) -> Vec<Box<dyn WitnessGenerator<F>>> {
let gen = AssertLessThanGenerator::<F, D> {
gate_index,
gate: self.clone(),
};
vec![Box::new(gen.adapter())]
}
fn num_wires(&self) -> usize {
self.wire_intermediate_value(self.num_chunks - 1) + 1
}
fn num_constants(&self) -> usize {
0
}
fn degree(&self) -> usize {
1 << self.chunk_bits()
}
fn num_constraints(&self) -> usize {
4 + 5 * self.num_chunks
}
}
#[derive(Debug)]
struct AssertLessThanGenerator<F: RichField + Extendable<D>, const D: usize> {
gate_index: usize,
gate: AssertLessThanGate<F, D>,
}
impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
for AssertLessThanGenerator<F, D>
{
fn dependencies(&self) -> Vec<Target> {
let local_target = |input| Target::wire(self.gate_index, input);
vec![
local_target(self.gate.wire_first_input()),
local_target(self.gate.wire_second_input()),
]
}
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
let local_wire = |input| Wire {
gate: self.gate_index,
input,
};
let get_local_wire = |input| witness.get_wire(local_wire(input));
let first_input = get_local_wire(self.gate.wire_first_input());
let second_input = get_local_wire(self.gate.wire_second_input());
let first_input_u64 = first_input.to_canonical_u64();
let second_input_u64 = second_input.to_canonical_u64();
debug_assert!(first_input_u64 < second_input_u64);
let chunk_size = 1 << self.gate.chunk_bits();
let first_input_chunks: Vec<F> = (0..self.gate.num_chunks)
.scan(first_input_u64, |acc, _| {
let tmp = *acc % chunk_size;
*acc /= chunk_size;
Some(F::from_canonical_u64(tmp))
})
.collect();
let second_input_chunks: Vec<F> = (0..self.gate.num_chunks)
.scan(second_input_u64, |acc, _| {
let tmp = *acc % chunk_size;
*acc /= chunk_size;
Some(F::from_canonical_u64(tmp))
})
.collect();
let chunks_equal: Vec<F> = (0..self.gate.num_chunks)
.map(|i| F::from_bool(first_input_chunks[i] == second_input_chunks[i]))
.collect();
let equality_dummies: Vec<F> = first_input_chunks
.iter()
.zip(second_input_chunks.iter())
.map(|(&f, &s)| if f == s { F::ONE } else { F::ONE / (s - f) })
.collect();
let mut most_significant_diff_so_far = F::ZERO;
let mut intermediate_values = Vec::new();
for i in 0..self.gate.num_chunks {
if first_input_chunks[i] != second_input_chunks[i] {
most_significant_diff_so_far = second_input_chunks[i] - first_input_chunks[i];
intermediate_values.push(F::ZERO);
} else {
intermediate_values.push(most_significant_diff_so_far);
}
}
let most_significant_diff = most_significant_diff_so_far;
out_buffer.set_wire(
local_wire(self.gate.wire_most_significant_diff()),
most_significant_diff,
);
for i in 0..self.gate.num_chunks {
out_buffer.set_wire(
local_wire(self.gate.wire_first_chunk_val(i)),
first_input_chunks[i],
);
out_buffer.set_wire(
local_wire(self.gate.wire_second_chunk_val(i)),
second_input_chunks[i],
);
out_buffer.set_wire(
local_wire(self.gate.wire_equality_dummy(i)),
equality_dummies[i],
);
out_buffer.set_wire(local_wire(self.gate.wire_chunks_equal(i)), chunks_equal[i]);
out_buffer.set_wire(
local_wire(self.gate.wire_intermediate_value(i)),
intermediate_values[i],
);
}
}
}
#[cfg(test)]
mod tests {
use std::marker::PhantomData;
use anyhow::Result;
use rand::Rng;
use crate::field::extension_field::quartic::QuarticExtension;
use crate::field::field_types::{Field, PrimeField};
use crate::field::goldilocks_field::GoldilocksField;
use crate::gates::assert_le::AssertLessThanGate;
use crate::gates::gate::Gate;
use crate::gates::gate_testing::{test_eval_fns, test_low_degree};
use crate::hash::hash_types::HashOut;
use crate::plonk::vars::EvaluationVars;
#[test]
fn wire_indices() {
type AG = AssertLessThanGate<GoldilocksField, 4>;
let num_bits = 40;
let num_chunks = 5;
let gate = AG {
num_bits,
num_chunks,
_phantom: PhantomData,
};
assert_eq!(gate.wire_first_input(), 0);
assert_eq!(gate.wire_second_input(), 1);
assert_eq!(gate.wire_most_significant_diff(), 2);
assert_eq!(gate.wire_first_chunk_val(0), 3);
assert_eq!(gate.wire_first_chunk_val(4), 7);
assert_eq!(gate.wire_second_chunk_val(0), 8);
assert_eq!(gate.wire_second_chunk_val(4), 12);
assert_eq!(gate.wire_equality_dummy(0), 13);
assert_eq!(gate.wire_equality_dummy(4), 17);
assert_eq!(gate.wire_chunks_equal(0), 18);
assert_eq!(gate.wire_chunks_equal(4), 22);
assert_eq!(gate.wire_intermediate_value(0), 23);
assert_eq!(gate.wire_intermediate_value(4), 27);
}
#[test]
fn low_degree() {
let num_bits = 20;
let num_chunks = 4;
test_low_degree::<GoldilocksField, _, 4>(AssertLessThanGate::<_, 4>::new(
num_bits, num_chunks,
))
}
#[test]
fn eval_fns() -> Result<()> {
let num_bits = 20;
let num_chunks = 4;
test_eval_fns::<GoldilocksField, _, 4>(AssertLessThanGate::<_, 4>::new(
num_bits, num_chunks,
))
}
#[test]
fn test_gate_constraint() {
type F = GoldilocksField;
type FF = QuarticExtension<GoldilocksField>;
const D: usize = 4;
let num_bits = 40;
let num_chunks = 5;
let chunk_bits = num_bits / num_chunks;
// Returns the local wires for an AssertLessThanGate given the two inputs.
let get_wires = |first_input: F, second_input: F| -> Vec<FF> {
let mut v = Vec::new();
let first_input_u64 = first_input.to_canonical_u64();
let second_input_u64 = second_input.to_canonical_u64();
let chunk_size = 1 << chunk_bits;
let mut first_input_chunks: Vec<F> = (0..num_chunks)
.scan(first_input_u64, |acc, _| {
let tmp = *acc % chunk_size;
*acc /= chunk_size;
Some(F::from_canonical_u64(tmp))
})
.collect();
let mut second_input_chunks: Vec<F> = (0..num_chunks)
.scan(second_input_u64, |acc, _| {
let tmp = *acc % chunk_size;
*acc /= chunk_size;
Some(F::from_canonical_u64(tmp))
})
.collect();
let mut chunks_equal: Vec<F> = (0..num_chunks)
.map(|i| F::from_bool(first_input_chunks[i] == second_input_chunks[i]))
.collect();
let mut equality_dummies: Vec<F> = first_input_chunks
.iter()
.zip(second_input_chunks.iter())
.map(|(&f, &s)| if f == s { F::ONE } else { F::ONE / (s - f) })
.collect();
let mut most_significant_diff_so_far = F::ZERO;
let mut intermediate_values = Vec::new();
for i in 0..num_chunks {
if first_input_chunks[i] != second_input_chunks[i] {
most_significant_diff_so_far = second_input_chunks[i] - first_input_chunks[i];
intermediate_values.push(F::ZERO);
} else {
intermediate_values.push(most_significant_diff_so_far);
}
}
let most_significant_diff = most_significant_diff_so_far;
v.push(first_input);
v.push(second_input);
v.push(most_significant_diff);
v.append(&mut first_input_chunks);
v.append(&mut second_input_chunks);
v.append(&mut equality_dummies);
v.append(&mut chunks_equal);
v.append(&mut intermediate_values);
v.iter().map(|&x| x.into()).collect::<Vec<_>>()
};
let mut rng = rand::thread_rng();
let max: u64 = 1 << (num_bits - 1);
let first_input_u64 = rng.gen_range(0..max);
let second_input_u64 = {
let mut val = rng.gen_range(0..max);
while val < first_input_u64 {
val = rng.gen_range(0..max);
}
val
};
let first_input = F::from_canonical_u64(first_input_u64);
let second_input = F::from_canonical_u64(second_input_u64);
let less_than_gate = AssertLessThanGate::<F, D> {
num_bits,
num_chunks,
_phantom: PhantomData,
};
let less_than_vars = EvaluationVars {
local_constants: &[],
local_wires: &get_wires(first_input, second_input),
public_inputs_hash: &HashOut::rand(),
};
assert!(
less_than_gate
.eval_unfiltered(less_than_vars)
.iter()
.all(|x| x.is_zero()),
"Gate constraints are not satisfied."
);
let equal_gate = AssertLessThanGate::<F, D> {
num_bits,
num_chunks,
_phantom: PhantomData,
};
let equal_vars = EvaluationVars {
local_constants: &[],
local_wires: &get_wires(first_input, first_input),
public_inputs_hash: &HashOut::rand(),
};
assert!(
equal_gate
.eval_unfiltered(equal_vars)
.iter()
.all(|x| x.is_zero()),
"Gate constraints are not satisfied."
);
}
}