use std::marker::PhantomData; use crate::field::extension_field::target::ExtensionTarget; use crate::field::extension_field::Extendable; use crate::field::field_types::{Field, PrimeField, RichField}; use crate::gates::gate::Gate; use crate::iop::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator}; use crate::iop::target::Target; use crate::iop::wire::Wire; use crate::iop::witness::{PartitionWitness, Witness}; use crate::plonk::circuit_builder::CircuitBuilder; use crate::plonk::plonk_common::{reduce_with_powers, reduce_with_powers_ext_recursive}; use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase}; use crate::util::{bits_u64, ceil_div_usize}; // TODO: replace/merge this gate with `ComparisonGate`. /// A gate for checking that one value is less than or equal to another. #[derive(Clone, Debug)] pub struct AssertLessThanGate, const D: usize> { pub(crate) num_bits: usize, pub(crate) num_chunks: usize, _phantom: PhantomData, } impl, const D: usize> AssertLessThanGate { pub fn new(num_bits: usize, num_chunks: usize) -> Self { debug_assert!(num_bits < bits_u64(F::ORDER)); Self { num_bits, num_chunks, _phantom: PhantomData, } } pub fn chunk_bits(&self) -> usize { ceil_div_usize(self.num_bits, self.num_chunks) } pub fn wire_first_input(&self) -> usize { 0 } pub fn wire_second_input(&self) -> usize { 1 } pub fn wire_most_significant_diff(&self) -> usize { 2 } pub fn wire_first_chunk_val(&self, chunk: usize) -> usize { debug_assert!(chunk < self.num_chunks); 3 + chunk } pub fn wire_second_chunk_val(&self, chunk: usize) -> usize { debug_assert!(chunk < self.num_chunks); 3 + self.num_chunks + chunk } pub fn wire_equality_dummy(&self, chunk: usize) -> usize { debug_assert!(chunk < self.num_chunks); 3 + 2 * self.num_chunks + chunk } pub fn wire_chunks_equal(&self, chunk: usize) -> usize { debug_assert!(chunk < self.num_chunks); 3 + 3 * self.num_chunks + chunk } pub fn wire_intermediate_value(&self, chunk: usize) -> usize { debug_assert!(chunk < self.num_chunks); 3 + 4 * self.num_chunks + chunk } } impl, const D: usize> Gate for AssertLessThanGate { fn id(&self) -> String { format!("{:?}", self, D) } fn eval_unfiltered(&self, vars: EvaluationVars) -> Vec { let mut constraints = Vec::with_capacity(self.num_constraints()); let first_input = vars.local_wires[self.wire_first_input()]; let second_input = vars.local_wires[self.wire_second_input()]; // Get chunks and assert that they match let first_chunks: Vec = (0..self.num_chunks) .map(|i| vars.local_wires[self.wire_first_chunk_val(i)]) .collect(); let second_chunks: Vec = (0..self.num_chunks) .map(|i| vars.local_wires[self.wire_second_chunk_val(i)]) .collect(); let first_chunks_combined = reduce_with_powers( &first_chunks, F::Extension::from_canonical_usize(1 << self.chunk_bits()), ); let second_chunks_combined = reduce_with_powers( &second_chunks, F::Extension::from_canonical_usize(1 << self.chunk_bits()), ); constraints.push(first_chunks_combined - first_input); constraints.push(second_chunks_combined - second_input); let chunk_size = 1 << self.chunk_bits(); let mut most_significant_diff_so_far = F::Extension::ZERO; for i in 0..self.num_chunks { // Range-check the chunks to be less than `chunk_size`. let first_product = (0..chunk_size) .map(|x| first_chunks[i] - F::Extension::from_canonical_usize(x)) .product(); let second_product = (0..chunk_size) .map(|x| second_chunks[i] - F::Extension::from_canonical_usize(x)) .product(); constraints.push(first_product); constraints.push(second_product); let difference = second_chunks[i] - first_chunks[i]; let equality_dummy = vars.local_wires[self.wire_equality_dummy(i)]; let chunks_equal = vars.local_wires[self.wire_chunks_equal(i)]; // Two constraints to assert that `chunks_equal` is valid. constraints.push(difference * equality_dummy - (F::Extension::ONE - chunks_equal)); constraints.push(chunks_equal * difference); // Update `most_significant_diff_so_far`. let intermediate_value = vars.local_wires[self.wire_intermediate_value(i)]; constraints.push(intermediate_value - chunks_equal * most_significant_diff_so_far); most_significant_diff_so_far = intermediate_value + (F::Extension::ONE - chunks_equal) * difference; } let most_significant_diff = vars.local_wires[self.wire_most_significant_diff()]; constraints.push(most_significant_diff - most_significant_diff_so_far); // Range check `most_significant_diff` to be less than `chunk_size`. let product = (0..chunk_size) .map(|x| most_significant_diff - F::Extension::from_canonical_usize(x)) .product(); constraints.push(product); constraints } fn eval_unfiltered_base(&self, vars: EvaluationVarsBase) -> Vec { let mut constraints = Vec::with_capacity(self.num_constraints()); let first_input = vars.local_wires[self.wire_first_input()]; let second_input = vars.local_wires[self.wire_second_input()]; // Get chunks and assert that they match let first_chunks: Vec = (0..self.num_chunks) .map(|i| vars.local_wires[self.wire_first_chunk_val(i)]) .collect(); let second_chunks: Vec = (0..self.num_chunks) .map(|i| vars.local_wires[self.wire_second_chunk_val(i)]) .collect(); let first_chunks_combined = reduce_with_powers( &first_chunks, F::from_canonical_usize(1 << self.chunk_bits()), ); let second_chunks_combined = reduce_with_powers( &second_chunks, F::from_canonical_usize(1 << self.chunk_bits()), ); constraints.push(first_chunks_combined - first_input); constraints.push(second_chunks_combined - second_input); let chunk_size = 1 << self.chunk_bits(); let mut most_significant_diff_so_far = F::ZERO; for i in 0..self.num_chunks { // Range-check the chunks to be less than `chunk_size`. let first_product = (0..chunk_size) .map(|x| first_chunks[i] - F::from_canonical_usize(x)) .product(); let second_product = (0..chunk_size) .map(|x| second_chunks[i] - F::from_canonical_usize(x)) .product(); constraints.push(first_product); constraints.push(second_product); let difference = second_chunks[i] - first_chunks[i]; let equality_dummy = vars.local_wires[self.wire_equality_dummy(i)]; let chunks_equal = vars.local_wires[self.wire_chunks_equal(i)]; // Two constraints to assert that `chunks_equal` is valid. constraints.push(difference * equality_dummy - (F::ONE - chunks_equal)); constraints.push(chunks_equal * difference); // Update `most_significant_diff_so_far`. let intermediate_value = vars.local_wires[self.wire_intermediate_value(i)]; constraints.push(intermediate_value - chunks_equal * most_significant_diff_so_far); most_significant_diff_so_far = intermediate_value + (F::ONE - chunks_equal) * difference; } let most_significant_diff = vars.local_wires[self.wire_most_significant_diff()]; constraints.push(most_significant_diff - most_significant_diff_so_far); // Range check `most_significant_diff` to be less than `chunk_size`. let product = (0..chunk_size) .map(|x| most_significant_diff - F::from_canonical_usize(x)) .product(); constraints.push(product); constraints } fn eval_unfiltered_recursively( &self, builder: &mut CircuitBuilder, vars: EvaluationTargets, ) -> Vec> { let mut constraints = Vec::with_capacity(self.num_constraints()); let first_input = vars.local_wires[self.wire_first_input()]; let second_input = vars.local_wires[self.wire_second_input()]; // Get chunks and assert that they match let first_chunks: Vec> = (0..self.num_chunks) .map(|i| vars.local_wires[self.wire_first_chunk_val(i)]) .collect(); let second_chunks: Vec> = (0..self.num_chunks) .map(|i| vars.local_wires[self.wire_second_chunk_val(i)]) .collect(); let chunk_base = builder.constant(F::from_canonical_usize(1 << self.chunk_bits())); let first_chunks_combined = reduce_with_powers_ext_recursive(builder, &first_chunks, chunk_base); let second_chunks_combined = reduce_with_powers_ext_recursive(builder, &second_chunks, chunk_base); constraints.push(builder.sub_extension(first_chunks_combined, first_input)); constraints.push(builder.sub_extension(second_chunks_combined, second_input)); let chunk_size = 1 << self.chunk_bits(); let mut most_significant_diff_so_far = builder.zero_extension(); let one = builder.one_extension(); // Find the chosen chunk. for i in 0..self.num_chunks { // Range-check the chunks to be less than `chunk_size`. let mut first_product = one; let mut second_product = one; for x in 0..chunk_size { let x_f = builder.constant_extension(F::Extension::from_canonical_usize(x)); let first_diff = builder.sub_extension(first_chunks[i], x_f); let second_diff = builder.sub_extension(second_chunks[i], x_f); first_product = builder.mul_extension(first_product, first_diff); second_product = builder.mul_extension(second_product, second_diff); } constraints.push(first_product); constraints.push(second_product); let difference = builder.sub_extension(second_chunks[i], first_chunks[i]); let equality_dummy = vars.local_wires[self.wire_equality_dummy(i)]; let chunks_equal = vars.local_wires[self.wire_chunks_equal(i)]; // Two constraints to assert that `chunks_equal` is valid. let diff_times_equal = builder.mul_extension(difference, equality_dummy); let not_equal = builder.sub_extension(one, chunks_equal); constraints.push(builder.sub_extension(diff_times_equal, not_equal)); constraints.push(builder.mul_extension(chunks_equal, difference)); // Update `most_significant_diff_so_far`. let intermediate_value = vars.local_wires[self.wire_intermediate_value(i)]; let old_diff = builder.mul_extension(chunks_equal, most_significant_diff_so_far); constraints.push(builder.sub_extension(intermediate_value, old_diff)); let not_equal = builder.sub_extension(one, chunks_equal); let new_diff = builder.mul_extension(not_equal, difference); most_significant_diff_so_far = builder.add_extension(intermediate_value, new_diff); } let most_significant_diff = vars.local_wires[self.wire_most_significant_diff()]; constraints .push(builder.sub_extension(most_significant_diff, most_significant_diff_so_far)); // Range check `most_significant_diff` to be less than `chunk_size`. let mut product = builder.one_extension(); for x in 0..chunk_size { let x_f = builder.constant_extension(F::Extension::from_canonical_usize(x)); let diff = builder.sub_extension(most_significant_diff, x_f); product = builder.mul_extension(product, diff); } constraints.push(product); constraints } fn generators( &self, gate_index: usize, _local_constants: &[F], ) -> Vec>> { let gen = AssertLessThanGenerator:: { gate_index, gate: self.clone(), }; vec![Box::new(gen.adapter())] } fn num_wires(&self) -> usize { self.wire_intermediate_value(self.num_chunks - 1) + 1 } fn num_constants(&self) -> usize { 0 } fn degree(&self) -> usize { 1 << self.chunk_bits() } fn num_constraints(&self) -> usize { 4 + 5 * self.num_chunks } } #[derive(Debug)] struct AssertLessThanGenerator, const D: usize> { gate_index: usize, gate: AssertLessThanGate, } impl, const D: usize> SimpleGenerator for AssertLessThanGenerator { fn dependencies(&self) -> Vec { let local_target = |input| Target::wire(self.gate_index, input); vec![ local_target(self.gate.wire_first_input()), local_target(self.gate.wire_second_input()), ] } fn run_once(&self, witness: &PartitionWitness, out_buffer: &mut GeneratedValues) { let local_wire = |input| Wire { gate: self.gate_index, input, }; let get_local_wire = |input| witness.get_wire(local_wire(input)); let first_input = get_local_wire(self.gate.wire_first_input()); let second_input = get_local_wire(self.gate.wire_second_input()); let first_input_u64 = first_input.to_canonical_u64(); let second_input_u64 = second_input.to_canonical_u64(); debug_assert!(first_input_u64 < second_input_u64); let chunk_size = 1 << self.gate.chunk_bits(); let first_input_chunks: Vec = (0..self.gate.num_chunks) .scan(first_input_u64, |acc, _| { let tmp = *acc % chunk_size; *acc /= chunk_size; Some(F::from_canonical_u64(tmp)) }) .collect(); let second_input_chunks: Vec = (0..self.gate.num_chunks) .scan(second_input_u64, |acc, _| { let tmp = *acc % chunk_size; *acc /= chunk_size; Some(F::from_canonical_u64(tmp)) }) .collect(); let chunks_equal: Vec = (0..self.gate.num_chunks) .map(|i| F::from_bool(first_input_chunks[i] == second_input_chunks[i])) .collect(); let equality_dummies: Vec = first_input_chunks .iter() .zip(second_input_chunks.iter()) .map(|(&f, &s)| if f == s { F::ONE } else { F::ONE / (s - f) }) .collect(); let mut most_significant_diff_so_far = F::ZERO; let mut intermediate_values = Vec::new(); for i in 0..self.gate.num_chunks { if first_input_chunks[i] != second_input_chunks[i] { most_significant_diff_so_far = second_input_chunks[i] - first_input_chunks[i]; intermediate_values.push(F::ZERO); } else { intermediate_values.push(most_significant_diff_so_far); } } let most_significant_diff = most_significant_diff_so_far; out_buffer.set_wire( local_wire(self.gate.wire_most_significant_diff()), most_significant_diff, ); for i in 0..self.gate.num_chunks { out_buffer.set_wire( local_wire(self.gate.wire_first_chunk_val(i)), first_input_chunks[i], ); out_buffer.set_wire( local_wire(self.gate.wire_second_chunk_val(i)), second_input_chunks[i], ); out_buffer.set_wire( local_wire(self.gate.wire_equality_dummy(i)), equality_dummies[i], ); out_buffer.set_wire(local_wire(self.gate.wire_chunks_equal(i)), chunks_equal[i]); out_buffer.set_wire( local_wire(self.gate.wire_intermediate_value(i)), intermediate_values[i], ); } } } #[cfg(test)] mod tests { use std::marker::PhantomData; use anyhow::Result; use rand::Rng; use crate::field::extension_field::quartic::QuarticExtension; use crate::field::field_types::{Field, PrimeField}; use crate::field::goldilocks_field::GoldilocksField; use crate::gates::assert_le::AssertLessThanGate; use crate::gates::gate::Gate; use crate::gates::gate_testing::{test_eval_fns, test_low_degree}; use crate::hash::hash_types::HashOut; use crate::plonk::vars::EvaluationVars; #[test] fn wire_indices() { type AG = AssertLessThanGate; let num_bits = 40; let num_chunks = 5; let gate = AG { num_bits, num_chunks, _phantom: PhantomData, }; assert_eq!(gate.wire_first_input(), 0); assert_eq!(gate.wire_second_input(), 1); assert_eq!(gate.wire_most_significant_diff(), 2); assert_eq!(gate.wire_first_chunk_val(0), 3); assert_eq!(gate.wire_first_chunk_val(4), 7); assert_eq!(gate.wire_second_chunk_val(0), 8); assert_eq!(gate.wire_second_chunk_val(4), 12); assert_eq!(gate.wire_equality_dummy(0), 13); assert_eq!(gate.wire_equality_dummy(4), 17); assert_eq!(gate.wire_chunks_equal(0), 18); assert_eq!(gate.wire_chunks_equal(4), 22); assert_eq!(gate.wire_intermediate_value(0), 23); assert_eq!(gate.wire_intermediate_value(4), 27); } #[test] fn low_degree() { let num_bits = 20; let num_chunks = 4; test_low_degree::(AssertLessThanGate::<_, 4>::new( num_bits, num_chunks, )) } #[test] fn eval_fns() -> Result<()> { let num_bits = 20; let num_chunks = 4; test_eval_fns::(AssertLessThanGate::<_, 4>::new( num_bits, num_chunks, )) } #[test] fn test_gate_constraint() { type F = GoldilocksField; type FF = QuarticExtension; const D: usize = 4; let num_bits = 40; let num_chunks = 5; let chunk_bits = num_bits / num_chunks; // Returns the local wires for an AssertLessThanGate given the two inputs. let get_wires = |first_input: F, second_input: F| -> Vec { let mut v = Vec::new(); let first_input_u64 = first_input.to_canonical_u64(); let second_input_u64 = second_input.to_canonical_u64(); let chunk_size = 1 << chunk_bits; let mut first_input_chunks: Vec = (0..num_chunks) .scan(first_input_u64, |acc, _| { let tmp = *acc % chunk_size; *acc /= chunk_size; Some(F::from_canonical_u64(tmp)) }) .collect(); let mut second_input_chunks: Vec = (0..num_chunks) .scan(second_input_u64, |acc, _| { let tmp = *acc % chunk_size; *acc /= chunk_size; Some(F::from_canonical_u64(tmp)) }) .collect(); let mut chunks_equal: Vec = (0..num_chunks) .map(|i| F::from_bool(first_input_chunks[i] == second_input_chunks[i])) .collect(); let mut equality_dummies: Vec = first_input_chunks .iter() .zip(second_input_chunks.iter()) .map(|(&f, &s)| if f == s { F::ONE } else { F::ONE / (s - f) }) .collect(); let mut most_significant_diff_so_far = F::ZERO; let mut intermediate_values = Vec::new(); for i in 0..num_chunks { if first_input_chunks[i] != second_input_chunks[i] { most_significant_diff_so_far = second_input_chunks[i] - first_input_chunks[i]; intermediate_values.push(F::ZERO); } else { intermediate_values.push(most_significant_diff_so_far); } } let most_significant_diff = most_significant_diff_so_far; v.push(first_input); v.push(second_input); v.push(most_significant_diff); v.append(&mut first_input_chunks); v.append(&mut second_input_chunks); v.append(&mut equality_dummies); v.append(&mut chunks_equal); v.append(&mut intermediate_values); v.iter().map(|&x| x.into()).collect::>() }; let mut rng = rand::thread_rng(); let max: u64 = 1 << (num_bits - 1); let first_input_u64 = rng.gen_range(0..max); let second_input_u64 = { let mut val = rng.gen_range(0..max); while val < first_input_u64 { val = rng.gen_range(0..max); } val }; let first_input = F::from_canonical_u64(first_input_u64); let second_input = F::from_canonical_u64(second_input_u64); let less_than_gate = AssertLessThanGate:: { num_bits, num_chunks, _phantom: PhantomData, }; let less_than_vars = EvaluationVars { local_constants: &[], local_wires: &get_wires(first_input, second_input), public_inputs_hash: &HashOut::rand(), }; assert!( less_than_gate .eval_unfiltered(less_than_vars) .iter() .all(|x| x.is_zero()), "Gate constraints are not satisfied." ); let equal_gate = AssertLessThanGate:: { num_bits, num_chunks, _phantom: PhantomData, }; let equal_vars = EvaluationVars { local_constants: &[], local_wires: &get_wires(first_input, first_input), public_inputs_hash: &HashOut::rand(), }; assert!( equal_gate .eval_unfiltered(equal_vars) .iter() .all(|x| x.is_zero()), "Gate constraints are not satisfied." ); } }