plonky2/src/circuit_data.rs
Daniel Lubarov b7bc1bf313 Seed Challenger with a hash of the instance
I think this is the recommended way to apply Fiat-Shamir, to avoid any possible attacks like taking someone else's proof and using it to prove a slightly different statement.
2021-04-22 16:38:49 -07:00

163 lines
5.1 KiB
Rust

use crate::field::field::Field;
use crate::gates::gate::GateRef;
use crate::generator::WitnessGenerator;
use crate::proof::{Hash, HashTarget, Proof};
use crate::prover::prove;
use crate::verifier::verify;
use crate::witness::PartialWitness;
#[derive(Copy, Clone)]
pub struct CircuitConfig {
pub num_wires: usize,
pub num_routed_wires: usize,
pub security_bits: usize,
pub rate_bits: usize,
/// The number of times to repeat checks that have soundness errors of (roughly) `degree / |F|`.
pub num_checks: usize,
}
impl Default for CircuitConfig {
fn default() -> Self {
CircuitConfig {
num_wires: 4,
num_routed_wires: 4,
security_bits: 128,
rate_bits: 3,
num_checks: 3,
}
}
}
impl CircuitConfig {
pub fn num_advice_wires(&self) -> usize {
self.num_wires - self.num_routed_wires
}
}
/// Circuit data required by the prover or the verifier.
pub struct CircuitData<F: Field> {
pub(crate) prover_only: ProverOnlyCircuitData<F>,
pub(crate) verifier_only: VerifierOnlyCircuitData,
pub(crate) common: CommonCircuitData<F>,
}
impl<F: Field> CircuitData<F> {
pub fn prove(&self, inputs: PartialWitness<F>) -> Proof<F> {
prove(&self.prover_only, &self.common, inputs)
}
pub fn verify(&self) {
verify(&self.verifier_only, &self.common)
}
}
/// Circuit data required by the prover. This may be thought of as a proving key, although it
/// includes code for witness generation.
///
/// The goal here is to make proof generation as fast as we can, rather than making this prover
/// structure as succinct as we can. Thus we include various precomputed data which isn't strictly
/// required, like LDEs of preprocessed polynomials. If more succinctness was desired, we could
/// construct a more minimal prover structure and convert back and forth.
pub struct ProverCircuitData<F: Field> {
pub(crate) prover_only: ProverOnlyCircuitData<F>,
pub(crate) common: CommonCircuitData<F>,
}
impl<F: Field> ProverCircuitData<F> {
pub fn prove(&self, inputs: PartialWitness<F>) -> Proof<F> {
prove(&self.prover_only, &self.common, inputs)
}
}
/// Circuit data required by the prover.
pub struct VerifierCircuitData<F: Field> {
pub(crate) verifier_only: VerifierOnlyCircuitData,
pub(crate) common: CommonCircuitData<F>,
}
impl<F: Field> VerifierCircuitData<F> {
pub fn verify2(&self) {
verify(&self.verifier_only, &self.common)
}
}
/// Circuit data required by the prover, but not the verifier.
pub(crate) struct ProverOnlyCircuitData<F: Field> {
pub generators: Vec<Box<dyn WitnessGenerator<F>>>,
pub constant_ldes_t: Vec<Vec<F>>,
/// Transpose of LDEs of sigma polynomials (in the context of Plonk's permutation argument).
pub sigma_ldes_t: Vec<Vec<F>>,
}
/// Circuit data required by the verifier, but not the prover.
pub(crate) struct VerifierOnlyCircuitData {}
/// Circuit data required by both the prover and the verifier.
pub(crate) struct CommonCircuitData<F: Field> {
pub(crate) config: CircuitConfig,
pub(crate) degree_bits: usize,
/// The types of gates used in this circuit.
pub(crate) gates: Vec<GateRef<F>>,
/// The largest number of constraints imposed by any gate.
pub(crate) num_gate_constraints: usize,
/// A commitment to each constant polynomial.
pub(crate) constants_root: Hash<F>,
/// A commitment to each permutation polynomial.
pub(crate) sigmas_root: Hash<F>,
/// The `{k_i}` valued used in `S_ID_i` in Plonk's permutation argument.
pub(crate) k_is: Vec<F>,
/// A digest of the "circuit" (i.e. the instance, minus public inputs), which can be used to
/// seed Fiat-Shamir.
pub(crate) circuit_digest: Hash<F>,
}
impl<F: Field> CommonCircuitData<F> {
pub fn degree(&self) -> usize {
1 << self.degree_bits
}
pub fn lde_size(&self) -> usize {
1 << (self.degree_bits + self.config.rate_bits)
}
pub fn lde_generator(&self) -> F {
F::primitive_root_of_unity(self.degree_bits + self.config.rate_bits)
}
pub fn constraint_degree(&self) -> usize {
self.gates
.iter()
.map(|g| g.0.degree())
.max()
.expect("No gates?")
}
pub fn quotient_degree(&self) -> usize {
self.constraint_degree() - 1
}
pub fn total_constraints(&self) -> usize {
// 2 constraints for each Z check.
self.config.num_checks * 2 + self.num_gate_constraints
}
}
/// The `Target` version of `VerifierCircuitData`, for use inside recursive circuits. Note that this
/// is intentionally missing certain fields, such as `CircuitConfig`, because we support only a
/// limited form of dynamic inner circuits. We can't practically make things like the wire count
/// dynamic, at least not without setting a maximum wire count and paying for the worst case.
pub struct VerifierCircuitTarget {
/// A commitment to each constant polynomial.
pub(crate) constants_root: HashTarget,
/// A commitment to each permutation polynomial.
pub(crate) sigmas_root: HashTarget,
}