Seed Challenger with a hash of the instance

I think this is the recommended way to apply Fiat-Shamir, to avoid any possible attacks like taking someone else's proof and using it to prove a slightly different statement.
This commit is contained in:
Daniel Lubarov 2021-04-22 16:32:57 -07:00
parent 4491d5ad9f
commit b7bc1bf313
5 changed files with 110 additions and 30 deletions

View File

@ -1,16 +1,19 @@
use std::collections::{HashSet, HashMap};
use std::collections::{HashMap, HashSet};
use std::time::Instant;
use log::info;
use crate::circuit_data::{CircuitConfig, CircuitData, CommonCircuitData, ProverCircuitData, ProverOnlyCircuitData, VerifierCircuitData, VerifierOnlyCircuitData};
use crate::circuit_data::{
CircuitConfig, CircuitData, CommonCircuitData, ProverCircuitData, ProverOnlyCircuitData,
VerifierCircuitData, VerifierOnlyCircuitData,
};
use crate::field::cosets::get_unique_coset_shifts;
use crate::field::field::Field;
use crate::gates::constant::ConstantGate;
use crate::gates::gate::{GateInstance, GateRef};
use crate::gates::noop::NoopGate;
use crate::generator::{CopyGenerator, WitnessGenerator};
use crate::hash::merkle_root_bit_rev_order;
use crate::field::cosets::get_unique_coset_shifts;
use crate::hash::{hash_n_to_hash, merkle_root_bit_rev_order};
use crate::polynomial::polynomial::PolynomialValues;
use crate::target::Target;
use crate::util::{log2_strict, transpose, transpose_poly_values};
@ -84,14 +87,21 @@ impl<F: Field> CircuitBuilder<F> {
// TODO: Not passing next constants for now. Not sure if it's really useful...
self.add_generators(gate_type.0.generators(index, &constants, &[]));
self.gate_instances.push(GateInstance { gate_type, constants });
self.gate_instances.push(GateInstance {
gate_type,
constants,
});
index
}
fn check_gate_compatibility(&self, gate: &GateRef<F>) {
assert!(gate.0.num_wires() <= self.config.num_wires,
"{:?} requires {} wires, but our GateConfig has only {}",
gate.0.id(), gate.0.num_wires(), self.config.num_wires);
assert!(
gate.0.num_wires() <= self.config.num_wires,
"{:?} requires {} wires, but our GateConfig has only {}",
gate.0.id(),
gate.0.num_wires(),
self.config.num_wires
);
}
/// Shorthand for `generate_copy` and `assert_equal`.
@ -109,8 +119,14 @@ impl<F: Field> CircuitBuilder<F> {
/// Uses Plonk's permutation argument to require that two elements be equal.
/// Both elements must be routable, otherwise this method will panic.
pub fn assert_equal(&mut self, x: Target, y: Target) {
assert!(x.is_routable(self.config), "Tried to route a wire that isn't routable");
assert!(y.is_routable(self.config), "Tried to route a wire that isn't routable");
assert!(
x.is_routable(self.config),
"Tried to route a wire that isn't routable"
);
assert!(
y.is_routable(self.config),
"Tried to route a wire that isn't routable"
);
// TODO: Add to copy_constraints.
}
@ -150,7 +166,10 @@ impl<F: Field> CircuitBuilder<F> {
}
let gate = self.add_gate(ConstantGate::get(), vec![c]);
let target = Target::Wire(Wire { gate, input: ConstantGate::WIRE_OUTPUT });
let target = Target::Wire(Wire {
gate,
input: ConstantGate::WIRE_OUTPUT,
});
self.constants_to_targets.insert(c, target);
self.targets_to_constants.insert(target, c);
target
@ -175,11 +194,15 @@ impl<F: Field> CircuitBuilder<F> {
}
fn constant_polys(&self) -> Vec<PolynomialValues<F>> {
let num_constants = self.gate_instances.iter()
let num_constants = self
.gate_instances
.iter()
.map(|gate_inst| gate_inst.constants.len())
.max()
.unwrap();
let constants_per_gate = self.gate_instances.iter()
let constants_per_gate = self
.gate_instances
.iter()
.map(|gate_inst| {
let mut padded_constants = gate_inst.constants.clone();
for _ in padded_constants.len()..num_constants {
@ -196,13 +219,17 @@ impl<F: Field> CircuitBuilder<F> {
}
fn sigma_vecs(&self) -> Vec<PolynomialValues<F>> {
vec![PolynomialValues::zero(self.gate_instances.len()); self.config.num_routed_wires] // TODO
vec![PolynomialValues::zero(self.gate_instances.len()); self.config.num_routed_wires]
// TODO
}
/// Builds a "full circuit", with both prover and verifier data.
pub fn build(mut self) -> CircuitData<F> {
let start = Instant::now();
info!("degree before blinding & padding: {}", self.gate_instances.len());
info!(
"degree before blinding & padding: {}",
self.gate_instances.len()
);
self.blind_and_pad();
let degree = self.gate_instances.len();
info!("degree after blinding & padding: {}", degree);
@ -218,7 +245,11 @@ impl<F: Field> CircuitBuilder<F> {
let sigmas_root = merkle_root_bit_rev_order(sigma_ldes_t.clone());
let generators = self.generators;
let prover_only = ProverOnlyCircuitData { generators, constant_ldes_t, sigma_ldes_t };
let prover_only = ProverOnlyCircuitData {
generators,
constant_ldes_t,
sigma_ldes_t,
};
let verifier_only = VerifierOnlyCircuitData {};
// The HashSet of gates will have a non-deterministic order. When converting to a Vec, we
@ -226,7 +257,8 @@ impl<F: Field> CircuitBuilder<F> {
let mut gates = self.gates.iter().cloned().collect::<Vec<_>>();
gates.sort_unstable_by_key(|gate| gate.0.id());
let num_gate_constraints = gates.iter()
let num_gate_constraints = gates
.iter()
.map(|gate| gate.0.num_constraints())
.max()
.expect("No gates?");
@ -234,6 +266,13 @@ impl<F: Field> CircuitBuilder<F> {
let degree_bits = log2_strict(degree);
let k_is = get_unique_coset_shifts(degree, self.config.num_routed_wires);
// TODO: This should also include an encoding of gate constraints.
let circuit_digest_parts = [
constants_root.elements,
sigmas_root.elements,
];
let circuit_digest = hash_n_to_hash(circuit_digest_parts.concat(), false);
let common = CommonCircuitData {
config: self.config,
degree_bits,
@ -242,6 +281,7 @@ impl<F: Field> CircuitBuilder<F> {
constants_root,
sigmas_root,
k_is,
circuit_digest,
};
info!("Building circuit took {}s", start.elapsed().as_secs_f32());
@ -255,14 +295,28 @@ impl<F: Field> CircuitBuilder<F> {
/// Builds a "prover circuit", with data needed to generate proofs but not verify them.
pub fn build_prover(self) -> ProverCircuitData<F> {
// TODO: Can skip parts of this.
let CircuitData { prover_only, common, .. } = self.build();
ProverCircuitData { prover_only, common }
let CircuitData {
prover_only,
common,
..
} = self.build();
ProverCircuitData {
prover_only,
common,
}
}
/// Builds a "verifier circuit", with data needed to verify proofs but not generate them.
pub fn build_verifier(self) -> VerifierCircuitData<F> {
// TODO: Can skip parts of this.
let CircuitData { verifier_only, common, .. } = self.build();
VerifierCircuitData { verifier_only, common }
let CircuitData {
verifier_only,
common,
..
} = self.build();
VerifierCircuitData {
verifier_only,
common,
}
}
}

View File

@ -112,6 +112,10 @@ pub(crate) struct CommonCircuitData<F: Field> {
/// The `{k_i}` valued used in `S_ID_i` in Plonk's permutation argument.
pub(crate) k_is: Vec<F>,
/// A digest of the "circuit" (i.e. the instance, minus public inputs), which can be used to
/// seed Fiat-Shamir.
pub(crate) circuit_digest: Hash<F>,
}
impl<F: Field> CommonCircuitData<F> {

View File

@ -1,9 +1,9 @@
use crate::circuit_builder::CircuitBuilder;
use crate::field::field::Field;
use crate::gates::arithmetic::ArithmeticGate;
use crate::generator::SimpleGenerator;
use crate::target::Target;
use crate::wire::Wire;
use crate::generator::SimpleGenerator;
use crate::witness::PartialWitness;
impl<F: Field> CircuitBuilder<F> {
@ -22,8 +22,9 @@ impl<F: Field> CircuitBuilder<F> {
addend: Target,
) -> Target {
// See if we can determine the result without adding an `ArithmeticGate`.
if let Some(result) = self.arithmetic_special_cases(
const_0, multiplicand_0, multiplicand_1, const_1, addend) {
if let Some(result) =
self.arithmetic_special_cases(const_0, multiplicand_0, multiplicand_1, const_1, addend)
{
return result;
}
@ -69,7 +70,8 @@ impl<F: Field> CircuitBuilder<F> {
let mul_1_const = self.target_as_constant(multiplicand_1);
let addend_const = self.target_as_constant(addend);
let first_term_zero = const_0 == F::ZERO || multiplicand_0 == zero || multiplicand_1 == zero;
let first_term_zero =
const_0 == F::ZERO || multiplicand_0 == zero || multiplicand_1 == zero;
let second_term_zero = const_1 == F::ZERO || addend == zero;
// If both terms are constant, return their (constant) sum.
@ -156,17 +158,31 @@ impl<F: Field> CircuitBuilder<F> {
if y == one {
return x;
}
if let (Some(x_const), Some(y_const)) = (self.target_as_constant(x), self.target_as_constant(y)) {
if let (Some(x_const), Some(y_const)) =
(self.target_as_constant(x), self.target_as_constant(y))
{
return self.constant(x_const / y_const);
}
// Add an `ArithmeticGate` to compute `q * y`.
let gate = self.add_gate(ArithmeticGate::new(), vec![F::ONE, F::ZERO]);
let wire_multiplicand_0 = Wire { gate, input: ArithmeticGate::WIRE_MULTIPLICAND_0 };
let wire_multiplicand_1 = Wire { gate, input: ArithmeticGate::WIRE_MULTIPLICAND_1 };
let wire_addend = Wire { gate, input: ArithmeticGate::WIRE_ADDEND };
let wire_output = Wire { gate, input: ArithmeticGate::WIRE_OUTPUT };
let wire_multiplicand_0 = Wire {
gate,
input: ArithmeticGate::WIRE_MULTIPLICAND_0,
};
let wire_multiplicand_1 = Wire {
gate,
input: ArithmeticGate::WIRE_MULTIPLICAND_1,
};
let wire_addend = Wire {
gate,
input: ArithmeticGate::WIRE_ADDEND,
};
let wire_output = Wire {
gate,
input: ArithmeticGate::WIRE_OUTPUT,
};
let q = Target::Wire(wire_multiplicand_0);
self.add_generator(QuotientGenerator {

View File

@ -68,6 +68,10 @@ pub(crate) fn prove<F: Field>(
);
let mut challenger = Challenger::new();
// Observe the instance.
// TODO: Need to include public inputs as well.
challenger.observe_hash(&common_data.circuit_digest);
challenger.observe_hash(&wires_root);
let betas = challenger.get_n_challenges(num_checks);
let gammas = challenger.get_n_challenges(num_checks);

View File

@ -17,4 +17,6 @@ pub fn add_recursive_verifier<F: Field>(
) {
assert!(builder.config.num_wires >= MIN_WIRES);
assert!(builder.config.num_wires >= MIN_ROUTED_WIRES);
todo!()
}