plonky2/src/fri/recursive_verifier.rs
2021-10-18 15:19:09 +02:00

474 lines
17 KiB
Rust

use crate::field::extension_field::target::{flatten_target, ExtensionTarget};
use crate::field::extension_field::Extendable;
use crate::field::field_types::{Field, RichField};
use crate::fri::proof::{FriInitialTreeProofTarget, FriProofTarget, FriQueryRoundTarget};
use crate::fri::FriConfig;
use crate::gates::gate::Gate;
use crate::gates::interpolation::InterpolationGate;
use crate::gates::random_access::RandomAccessGate;
use crate::hash::hash_types::MerkleCapTarget;
use crate::iop::challenger::RecursiveChallenger;
use crate::iop::target::{BoolTarget, Target};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::circuit_data::CommonCircuitData;
use crate::plonk::plonk_common::PlonkPolynomials;
use crate::plonk::proof::OpeningSetTarget;
use crate::util::reducing::ReducingFactorTarget;
use crate::util::{log2_strict, reverse_index_bits_in_place};
use crate::with_context;
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Computes P'(x^arity) from {P(x*g^i)}_(i=0..arity), where g is a `arity`-th root of unity
/// and P' is the FRI reduced polynomial.
fn compute_evaluation(
&mut self,
x: Target,
x_index_within_coset_bits: &[BoolTarget],
arity_bits: usize,
evals: &[ExtensionTarget<D>],
beta: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let arity = 1 << arity_bits;
debug_assert_eq!(evals.len(), arity);
let g = F::primitive_root_of_unity(arity_bits);
let g_inv = g.exp_u64((arity as u64) - 1);
let g_inv_t = self.constant(g_inv);
// The evaluation vector needs to be reordered first.
let mut evals = evals.to_vec();
reverse_index_bits_in_place(&mut evals);
// Want `g^(arity - rev_x_index_within_coset)` as in the out-of-circuit version. Compute it
// as `(g^-1)^rev_x_index_within_coset`.
let start = self.exp_from_bits(g_inv_t, x_index_within_coset_bits.iter().rev());
let coset_start = self.mul(start, x);
// The answer is gotten by interpolating {(x*g^i, P(x*g^i))} and evaluating at beta.
let points = g
.powers()
.map(|y| {
let yc = self.constant(y);
self.mul(coset_start, yc)
})
.zip(evals)
.collect::<Vec<_>>();
self.interpolate(&points, beta)
}
/// Make sure we have enough wires and routed wires to do the FRI checks efficiently. This check
/// isn't required -- without it we'd get errors elsewhere in the stack -- but just gives more
/// helpful errors.
fn check_config(&self, arity: usize) {
// let random_access = RandomAccessGate::<F, D>::new(arity);
let interpolation_gate = InterpolationGate::<F, D>::new(arity);
// let min_wires = random_access
// .num_wires()
// .max(interpolation_gate.num_wires());
let min_wires = interpolation_gate.num_wires();
// let min_routed_wires = random_access
// .num_routed_wires()
// .max(interpolation_gate.num_routed_wires());
let min_routed_wires = interpolation_gate.num_routed_wires();
assert!(
self.config.num_wires >= min_wires,
"To efficiently perform FRI checks with an arity of {}, at least {} wires are needed. Consider reducing arity.",
arity,
min_wires
);
assert!(
self.config.num_routed_wires >= min_routed_wires,
"To efficiently perform FRI checks with an arity of {}, at least {} routed wires are needed. Consider reducing arity.",
arity,
min_routed_wires
);
}
fn fri_verify_proof_of_work(
&mut self,
proof: &FriProofTarget<D>,
challenger: &mut RecursiveChallenger,
config: &FriConfig,
) {
let mut inputs = challenger.get_hash(self).elements.to_vec();
inputs.push(proof.pow_witness);
let hash = self.hash_n_to_m(inputs, 1, false)[0];
self.assert_leading_zeros(
hash,
config.proof_of_work_bits + (64 - F::order().bits()) as u32,
);
}
pub fn verify_fri_proof(
&mut self,
// Openings of the PLONK polynomials.
os: &OpeningSetTarget<D>,
// Point at which the PLONK polynomials are opened.
zeta: ExtensionTarget<D>,
initial_merkle_caps: &[MerkleCapTarget],
proof: &FriProofTarget<D>,
challenger: &mut RecursiveChallenger,
common_data: &CommonCircuitData<F, D>,
) {
let config = &common_data.config;
if let Some(max_arity) = common_data.fri_params.max_arity() {
self.check_config(max_arity);
}
debug_assert_eq!(
common_data.final_poly_len(),
proof.final_poly.len(),
"Final polynomial has wrong degree."
);
// Size of the LDE domain.
let n = common_data.lde_size();
challenger.observe_opening_set(os);
// Scaling factor to combine polynomials.
let alpha = challenger.get_extension_challenge(self);
let betas = with_context!(
self,
"recover the random betas used in the FRI reductions.",
proof
.commit_phase_merkle_caps
.iter()
.map(|cap| {
challenger.observe_cap(cap);
challenger.get_extension_challenge(self)
})
.collect::<Vec<_>>()
);
challenger.observe_extension_elements(&proof.final_poly.0);
with_context!(
self,
"check PoW",
self.fri_verify_proof_of_work(proof, challenger, &config.fri_config)
);
// Check that parameters are coherent.
debug_assert_eq!(
config.fri_config.num_query_rounds,
proof.query_round_proofs.len(),
"Number of query rounds does not match config."
);
let precomputed_reduced_evals = with_context!(
self,
"precompute reduced evaluations",
PrecomputedReducedEvalsTarget::from_os_and_alpha(
os,
alpha,
common_data.degree_bits,
zeta,
self
)
);
for (i, round_proof) in proof.query_round_proofs.iter().enumerate() {
// To minimize noise in our logs, we will only record a context for a single FRI query.
// The very first query will have some extra gates due to constants being registered, so
// the second query is a better representative.
let level = if i == 1 {
log::Level::Debug
} else {
log::Level::Trace
};
let num_queries = proof.query_round_proofs.len();
with_context!(
self,
level,
&format!("verify one (of {}) query rounds", num_queries),
self.fri_verifier_query_round(
zeta,
alpha,
precomputed_reduced_evals,
initial_merkle_caps,
proof,
challenger,
n,
&betas,
round_proof,
common_data,
)
);
}
}
fn fri_verify_initial_proof(
&mut self,
x_index_bits: &[BoolTarget],
proof: &FriInitialTreeProofTarget,
initial_merkle_caps: &[MerkleCapTarget],
cap_index: Target,
) {
for (i, ((evals, merkle_proof), cap)) in proof
.evals_proofs
.iter()
.zip(initial_merkle_caps)
.enumerate()
{
with_context!(
self,
&format!("verify {}'th initial Merkle proof", i),
self.verify_merkle_proof_with_cap_index(
evals.clone(),
x_index_bits,
cap_index,
cap,
merkle_proof
)
);
}
}
fn fri_combine_initial(
&mut self,
proof: &FriInitialTreeProofTarget,
alpha: ExtensionTarget<D>,
subgroup_x: Target,
vanish_zeta: ExtensionTarget<D>,
precomputed_reduced_evals: PrecomputedReducedEvalsTarget<D>,
common_data: &CommonCircuitData<F, D>,
) -> ExtensionTarget<D> {
assert!(D > 1, "Not implemented for D=1.");
let config = self.config.clone();
let degree_log = common_data.degree_bits;
debug_assert_eq!(
degree_log,
common_data.config.cap_height + proof.evals_proofs[0].1.siblings.len()
- config.rate_bits
);
let subgroup_x = self.convert_to_ext(subgroup_x);
let mut alpha = ReducingFactorTarget::new(alpha);
let mut sum = self.zero_extension();
// We will add three terms to `sum`:
// - one for polynomials opened at `x` only
// - one for polynomials opened at `x` and `g x`
// Polynomials opened at `x`, i.e., the constants-sigmas, wires, quotient and partial products polynomials.
let single_evals = [
PlonkPolynomials::CONSTANTS_SIGMAS,
PlonkPolynomials::WIRES,
PlonkPolynomials::QUOTIENT,
]
.iter()
.flat_map(|&p| proof.unsalted_evals(p, config.zero_knowledge))
.chain(
&proof.unsalted_evals(PlonkPolynomials::ZS_PARTIAL_PRODUCTS, config.zero_knowledge)
[common_data.partial_products_range()],
)
.copied()
.collect::<Vec<_>>();
let single_composition_eval = alpha.reduce_base(&single_evals, self);
let single_numerator =
self.sub_extension(single_composition_eval, precomputed_reduced_evals.single);
sum = self.div_add_extension(single_numerator, vanish_zeta, sum);
alpha.reset();
// Polynomials opened at `x` and `g x`, i.e., the Zs polynomials.
let zs_evals = proof
.unsalted_evals(PlonkPolynomials::ZS_PARTIAL_PRODUCTS, config.zero_knowledge)
.iter()
.take(common_data.zs_range().end)
.copied()
.collect::<Vec<_>>();
let zs_composition_eval = alpha.reduce_base(&zs_evals, self);
let interpol_val = self.mul_add_extension(
vanish_zeta,
precomputed_reduced_evals.slope,
precomputed_reduced_evals.zs,
);
let zs_numerator = self.sub_extension(zs_composition_eval, interpol_val);
let vanish_zeta_right =
self.sub_extension(subgroup_x, precomputed_reduced_evals.zeta_right);
sum = alpha.shift(sum, self);
let zs_denominator = self.mul_extension(vanish_zeta, vanish_zeta_right);
sum = self.div_add_extension(zs_numerator, zs_denominator, sum);
sum
}
fn fri_verifier_query_round(
&mut self,
zeta: ExtensionTarget<D>,
alpha: ExtensionTarget<D>,
precomputed_reduced_evals: PrecomputedReducedEvalsTarget<D>,
initial_merkle_caps: &[MerkleCapTarget],
proof: &FriProofTarget<D>,
challenger: &mut RecursiveChallenger,
n: usize,
betas: &[ExtensionTarget<D>],
round_proof: &FriQueryRoundTarget<D>,
common_data: &CommonCircuitData<F, D>,
) {
let config = &common_data.config;
let n_log = log2_strict(n);
// TODO: Do we need to range check `x_index` to a target smaller than `p`?
let x_index = challenger.get_challenge(self);
let mut x_index_bits = self.low_bits(x_index, n_log, 64);
let cap_index =
self.le_sum(x_index_bits[x_index_bits.len() - common_data.config.cap_height..].iter());
with_context!(
self,
"check FRI initial proof",
self.fri_verify_initial_proof(
&x_index_bits,
&round_proof.initial_trees_proof,
initial_merkle_caps,
cap_index
)
);
// `subgroup_x` is `subgroup[x_index]`, i.e., the actual field element in the domain.
let (mut subgroup_x, vanish_zeta) = with_context!(self, "compute x from its index", {
let g = self.constant(F::coset_shift());
let phi = self.constant(F::primitive_root_of_unity(n_log));
let phi = self.exp_from_bits(phi, x_index_bits.iter().rev());
let g_ext = self.convert_to_ext(g);
let phi_ext = self.convert_to_ext(phi);
// `subgroup_x = g*phi, vanish_zeta = g*phi - zeta`
let subgroup_x = self.mul(g, phi);
let vanish_zeta = self.mul_sub_extension(g_ext, phi_ext, zeta);
(subgroup_x, vanish_zeta)
});
// old_eval is the last derived evaluation; it will be checked for consistency with its
// committed "parent" value in the next iteration.
let mut old_eval = with_context!(
self,
"combine initial oracles",
self.fri_combine_initial(
&round_proof.initial_trees_proof,
alpha,
subgroup_x,
vanish_zeta,
precomputed_reduced_evals,
common_data,
)
);
for (i, &arity_bits) in common_data
.fri_params
.reduction_arity_bits
.iter()
.enumerate()
{
let evals = &round_proof.steps[i].evals;
// Split x_index into the index of the coset x is in, and the index of x within that coset.
let coset_index_bits = x_index_bits[arity_bits..].to_vec();
let x_index_within_coset_bits = &x_index_bits[..arity_bits];
let x_index_within_coset = self.le_sum(x_index_within_coset_bits.iter());
// Check consistency with our old evaluation from the previous round.
self.random_access_padded(
x_index_within_coset,
old_eval,
evals.clone(),
1 << config.cap_height,
);
// Infer P(y) from {P(x)}_{x^arity=y}.
old_eval = with_context!(
self,
"infer evaluation using interpolation",
self.compute_evaluation(
subgroup_x,
x_index_within_coset_bits,
arity_bits,
evals,
betas[i],
)
);
with_context!(
self,
"verify FRI round Merkle proof.",
self.verify_merkle_proof_with_cap_index(
flatten_target(evals),
&coset_index_bits,
cap_index,
&proof.commit_phase_merkle_caps[i],
&round_proof.steps[i].merkle_proof,
)
);
// Update the point x to x^arity.
subgroup_x = self.exp_power_of_2(subgroup_x, arity_bits);
x_index_bits = coset_index_bits;
}
// Final check of FRI. After all the reductions, we check that the final polynomial is equal
// to the one sent by the prover.
let eval = with_context!(
self,
&format!(
"evaluate final polynomial of length {}",
proof.final_poly.len()
),
proof.final_poly.eval_scalar(self, subgroup_x)
);
self.connect_extension(eval, old_eval);
}
}
#[derive(Copy, Clone)]
struct PrecomputedReducedEvalsTarget<const D: usize> {
pub single: ExtensionTarget<D>,
pub zs: ExtensionTarget<D>,
/// Slope of the line from `(zeta, zs)` to `(zeta_right, zs_right)`.
pub slope: ExtensionTarget<D>,
pub zeta_right: ExtensionTarget<D>,
}
impl<const D: usize> PrecomputedReducedEvalsTarget<D> {
fn from_os_and_alpha<F: RichField + Extendable<D>>(
os: &OpeningSetTarget<D>,
alpha: ExtensionTarget<D>,
degree_log: usize,
zeta: ExtensionTarget<D>,
builder: &mut CircuitBuilder<F, D>,
) -> Self {
let mut alpha = ReducingFactorTarget::new(alpha);
let single = alpha.reduce(
&os.constants
.iter()
.chain(&os.plonk_sigmas)
.chain(&os.wires)
.chain(&os.quotient_polys)
.chain(&os.partial_products)
.copied()
.collect::<Vec<_>>(),
builder,
);
let zs = alpha.reduce(&os.plonk_zs, builder);
let zs_right = alpha.reduce(&os.plonk_zs_right, builder);
let g = builder.constant_extension(F::Extension::primitive_root_of_unity(degree_log));
let zeta_right = builder.mul_extension(g, zeta);
let numerator = builder.sub_extension(zs_right, zs);
let denominator = builder.sub_extension(zeta_right, zeta);
Self {
single,
zs,
slope: builder.div_extension(numerator, denominator),
zeta_right,
}
}
}