Working RAM gate

This commit is contained in:
wborgeaud 2021-10-18 15:19:09 +02:00
parent 00ce9d9f25
commit 104fd08e72
4 changed files with 209 additions and 174 deletions

View File

@ -60,15 +60,17 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// isn't required -- without it we'd get errors elsewhere in the stack -- but just gives more
/// helpful errors.
fn check_config(&self, arity: usize) {
let random_access = RandomAccessGate::<F, D>::new(arity);
// let random_access = RandomAccessGate::<F, D>::new(arity);
let interpolation_gate = InterpolationGate::<F, D>::new(arity);
let min_wires = random_access
.num_wires()
.max(interpolation_gate.num_wires());
let min_routed_wires = random_access
.num_routed_wires()
.max(interpolation_gate.num_routed_wires());
// let min_wires = random_access
// .num_wires()
// .max(interpolation_gate.num_wires());
let min_wires = interpolation_gate.num_wires();
// let min_routed_wires = random_access
// .num_routed_wires()
// .max(interpolation_gate.num_routed_wires());
let min_routed_wires = interpolation_gate.num_routed_wires();
assert!(
self.config.num_wires >= min_wires,

View File

@ -8,7 +8,7 @@ use crate::plonk::circuit_builder::CircuitBuilder;
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Checks that a `Target` matches a vector at a non-deterministic index.
/// Note: `index` is not range-checked.
pub fn random_access(
pub fn random_access_extension(
&mut self,
access_index: Target,
claimed_element: ExtensionTarget<D>,
@ -18,23 +18,25 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
if v.len() == 1 {
return self.connect_extension(claimed_element, v[0]);
}
let gate = RandomAccessGate::new(v.len());
let gate = RandomAccessGate::new(D, v.len());
let gate_index = self.add_gate(gate.clone(), vec![]);
v.iter().enumerate().for_each(|(i, &val)| {
self.connect_extension(
val,
ExtensionTarget::from_range(gate_index, gate.wires_list_item(i)),
for copy in 0..D {
v.iter().enumerate().for_each(|(i, &val)| {
self.connect(
val.0[copy],
Target::wire(gate_index, gate.wire_list_item(i, copy)),
);
});
self.connect(
access_index,
Target::wire(gate_index, gate.wire_access_index(copy)),
);
});
self.connect(
access_index,
Target::wire(gate_index, gate.wire_access_index()),
);
self.connect_extension(
claimed_element,
ExtensionTarget::from_range(gate_index, gate.wires_claimed_element()),
);
self.connect(
claimed_element.0[copy],
Target::wire(gate_index, gate.wire_claimed_element(copy)),
);
}
}
/// Like `random_access`, but first pads `v` to a given minimum length. This can help to avoid
@ -54,7 +56,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
if v.len() < min_length {
v.resize(8, zero);
}
self.random_access(access_index, claimed_element, v);
self.random_access_extension(access_index, claimed_element, v);
}
}
@ -83,7 +85,7 @@ mod tests {
for i in 0..len {
let it = builder.constant(F::from_canonical_usize(i));
let elem = builder.constant_extension(vec[i]);
builder.random_access(it, elem, v.clone());
builder.random_access_extension(it, elem, v.clone());
}
let data = builder.build();

View File

@ -30,31 +30,33 @@ impl<F: RichField + Extendable<D>, const D: usize> RandomAccessGate<F, D> {
}
}
pub fn new_from_config(config: CircuitConfig, vec_size: usize) -> Self {
let num_copies = Self::max_num_copies(config.num_routed_wires, chunk_size);
Self::new(num_copies, chunk_size)
pub fn new_from_config(config: &CircuitConfig, vec_size: usize) -> Self {
let num_copies = Self::max_num_copies(config.num_routed_wires, vec_size);
Self::new(num_copies, vec_size)
}
pub fn max_num_copies(num_routed_wires: usize, vec_size: usize) -> usize {
num_routed_wires / (2 + vec_size)
}
pub fn wire_access_index(&self) -> usize {
0
pub fn wire_access_index(&self, copy: usize) -> usize {
debug_assert!(copy < self.num_copies);
(2 + self.vec_size) * copy
}
pub fn wires_claimed_element(&self) -> Range<usize> {
1..D + 1
pub fn wire_claimed_element(&self, copy: usize) -> usize {
debug_assert!(copy < self.num_copies);
(2 + self.vec_size) * copy + 1
}
pub fn wires_list_item(&self, i: usize) -> Range<usize> {
pub fn wire_list_item(&self, i: usize, copy: usize) -> usize {
debug_assert!(i < self.vec_size);
let start = (i + 1) * D + 1;
start..start + D
debug_assert!(copy < self.num_copies);
(2 + self.vec_size) * copy + 2 + i
}
fn start_of_intermediate_wires(&self) -> usize {
(self.vec_size + 1) * D + 1
(2 + self.vec_size) * self.num_copies
}
pub(crate) fn num_routed_wires(&self) -> usize {
@ -64,16 +66,21 @@ impl<F: RichField + Extendable<D>, const D: usize> RandomAccessGate<F, D> {
/// An intermediate wire for a dummy variable used to show equality.
/// The prover sets this to 1/(x-y) if x != y, or to an arbitrary value if
/// x == y.
pub fn wire_equality_dummy_for_index(&self, i: usize) -> usize {
pub fn wire_equality_dummy_for_index(&self, i: usize, copy: usize) -> usize {
debug_assert!(i < self.vec_size);
self.start_of_intermediate_wires() + i
debug_assert!(copy < self.num_copies);
self.start_of_intermediate_wires() + copy * self.vec_size + i
}
/// An intermediate wire for the "index_matches" variable (1 if the current index is the index at
/// which to compare, 0 otherwise).
pub fn wire_index_matches_for_index(&self, i: usize) -> usize {
pub fn wire_index_matches_for_index(&self, i: usize, copy: usize) -> usize {
debug_assert!(i < self.vec_size);
self.start_of_intermediate_wires() + self.vec_size + i
debug_assert!(copy < self.num_copies);
self.start_of_intermediate_wires()
+ self.vec_size * self.num_copies
+ copy * self.vec_size
+ i
}
}
@ -83,53 +90,55 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for RandomAccessGa
}
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
let access_index = vars.local_wires[self.wire_access_index()];
let list_items = (0..self.vec_size)
.map(|i| vars.get_local_ext_algebra(self.wires_list_item(i)))
.collect::<Vec<_>>();
let claimed_element = vars.get_local_ext_algebra(self.wires_claimed_element());
let mut constraints = Vec::with_capacity(self.num_constraints());
for i in 0..self.vec_size {
let cur_index = F::Extension::from_canonical_usize(i);
let difference = cur_index - access_index;
let equality_dummy = vars.local_wires[self.wire_equality_dummy_for_index(i)];
let index_matches = vars.local_wires[self.wire_index_matches_for_index(i)];
// The two index equality constraints.
constraints.push(difference * equality_dummy - (F::Extension::ONE - index_matches));
constraints.push(index_matches * difference);
// Value equality constraint.
constraints.extend(
((list_items[i] - claimed_element).scalar_mul(index_matches)).to_basefield_array(),
);
for copy in 0..self.num_copies {
let access_index = vars.local_wires[self.wire_access_index(copy)];
let list_items = (0..self.vec_size)
.map(|i| vars.local_wires[self.wire_list_item(i, copy)])
.collect::<Vec<_>>();
let claimed_element = vars.local_wires[self.wire_claimed_element(copy)];
for i in 0..self.vec_size {
let cur_index = F::Extension::from_canonical_usize(i);
let difference = cur_index - access_index;
let equality_dummy = vars.local_wires[self.wire_equality_dummy_for_index(i, copy)];
let index_matches = vars.local_wires[self.wire_index_matches_for_index(i, copy)];
// The two index equality constraints.
dbg!(difference, equality_dummy, index_matches);
constraints.push(difference * equality_dummy - (F::Extension::ONE - index_matches));
constraints.push(index_matches * difference);
// Value equality constraint.
constraints.push(((list_items[i] - claimed_element) * index_matches));
}
}
constraints
}
fn eval_unfiltered_base(&self, vars: EvaluationVarsBase<F>) -> Vec<F> {
let access_index = vars.local_wires[self.wire_access_index()];
let list_items = (0..self.vec_size)
.map(|i| vars.get_local_ext(self.wires_list_item(i)))
.collect::<Vec<_>>();
let claimed_element = vars.get_local_ext(self.wires_claimed_element());
let mut constraints = Vec::with_capacity(self.num_constraints());
for i in 0..self.vec_size {
let cur_index = F::from_canonical_usize(i);
let difference = cur_index - access_index;
let equality_dummy = vars.local_wires[self.wire_equality_dummy_for_index(i)];
let index_matches = vars.local_wires[self.wire_index_matches_for_index(i)];
// The two equality constraints.
constraints.push(difference * equality_dummy - (F::ONE - index_matches));
constraints.push(index_matches * difference);
for copy in 0..self.num_copies {
let access_index = vars.local_wires[self.wire_access_index(copy)];
let list_items = (0..self.vec_size)
.map(|i| vars.local_wires[self.wire_list_item(i, copy)])
.collect::<Vec<_>>();
let claimed_element = vars.local_wires[self.wire_claimed_element(copy)];
// Value equality constraint.
constraints.extend(
((list_items[i] - claimed_element).scalar_mul(index_matches)).to_basefield_array(),
);
for i in 0..self.vec_size {
let cur_index = F::from_canonical_usize(i);
let difference = cur_index - access_index;
let equality_dummy = vars.local_wires[self.wire_equality_dummy_for_index(i, copy)];
let index_matches = vars.local_wires[self.wire_index_matches_for_index(i, copy)];
// The two index equality constraints.
constraints.push(difference * equality_dummy - (F::ONE - index_matches));
constraints.push(index_matches * difference);
// Value equality constraint.
constraints.push(((list_items[i] - claimed_element) * index_matches));
}
}
constraints
@ -140,35 +149,36 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for RandomAccessGa
builder: &mut CircuitBuilder<F, D>,
vars: EvaluationTargets<D>,
) -> Vec<ExtensionTarget<D>> {
let access_index = vars.local_wires[self.wire_access_index()];
let list_items = (0..self.vec_size)
.map(|i| vars.get_local_ext_algebra(self.wires_list_item(i)))
.collect::<Vec<_>>();
let claimed_element = vars.get_local_ext_algebra(self.wires_claimed_element());
let mut constraints = Vec::with_capacity(self.num_constraints());
for i in 0..self.vec_size {
let cur_index_ext = F::Extension::from_canonical_usize(i);
let cur_index = builder.constant_extension(cur_index_ext);
let difference = builder.sub_extension(cur_index, access_index);
let equality_dummy = vars.local_wires[self.wire_equality_dummy_for_index(i)];
let index_matches = vars.local_wires[self.wire_index_matches_for_index(i)];
for copy in 0..self.num_copies {
let access_index = vars.local_wires[self.wire_access_index(copy)];
let list_items = (0..self.vec_size)
.map(|i| vars.local_wires[self.wire_list_item(i, copy)])
.collect::<Vec<_>>();
let claimed_element = vars.local_wires[self.wire_claimed_element(copy)];
// The two equality constraints.
let one = builder.one_extension();
let not_index_matches = builder.sub_extension(one, index_matches);
let first_equality_constraint =
builder.mul_sub_extension(difference, equality_dummy, not_index_matches);
constraints.push(first_equality_constraint);
for i in 0..self.vec_size {
let cur_index_ext = F::Extension::from_canonical_usize(i);
let cur_index = builder.constant_extension(cur_index_ext);
let difference = builder.sub_extension(cur_index, access_index);
let equality_dummy = vars.local_wires[self.wire_equality_dummy_for_index(i, copy)];
let index_matches = vars.local_wires[self.wire_index_matches_for_index(i, copy)];
let second_equality_constraint = builder.mul_extension(index_matches, difference);
constraints.push(second_equality_constraint);
let one = builder.one_extension();
let not_index_matches = builder.sub_extension(one, index_matches);
let first_equality_constraint =
builder.mul_sub_extension(difference, equality_dummy, not_index_matches);
constraints.push(first_equality_constraint);
// Output constraint.
let diff = builder.sub_ext_algebra(list_items[i], claimed_element);
let conditional_diff = builder.scalar_mul_ext_algebra(index_matches, diff);
constraints.extend(conditional_diff.to_ext_target_array());
let second_equality_constraint = builder.mul_extension(index_matches, difference);
constraints.push(second_equality_constraint);
// Output constraint.
let diff = builder.sub_extension(list_items[i], claimed_element);
let conditional_diff = builder.mul_extension(index_matches, diff);
constraints.push(conditional_diff);
}
}
constraints
@ -187,7 +197,7 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for RandomAccessGa
}
fn num_wires(&self) -> usize {
self.wire_index_matches_for_index(self.vec_size - 1) + 1
self.wire_index_matches_for_index(self.vec_size - 1, self.num_copies - 1) + 1
}
fn num_constants(&self) -> usize {
@ -199,7 +209,7 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for RandomAccessGa
}
fn num_constraints(&self) -> usize {
self.vec_size * (2 + D)
self.num_copies * self.vec_size * 3
}
}
@ -215,13 +225,13 @@ impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
fn dependencies(&self) -> Vec<Target> {
let local_target = |input| Target::wire(self.gate_index, input);
let local_targets = |inputs: Range<usize>| inputs.map(local_target);
let mut deps = Vec::new();
deps.push(local_target(self.gate.wire_access_index()));
deps.extend(local_targets(self.gate.wires_claimed_element()));
for i in 0..self.gate.vec_size {
deps.extend(local_targets(self.gate.wires_list_item(i)));
for copy in 0..self.gate.num_copies {
deps.push(local_target(self.gate.wire_access_index(copy)));
deps.push(local_target(self.gate.wire_claimed_element(copy)));
for i in 0..self.gate.vec_size {
deps.push(local_target(self.gate.wire_list_item(i, copy)));
}
}
deps
}
@ -236,29 +246,34 @@ impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
// Compute the new vector and the values for equality_dummy and index_matches
let vec_size = self.gate.vec_size;
let access_index_f = get_local_wire(self.gate.wire_access_index());
for copy in 0..self.gate.num_copies {
let access_index_f = get_local_wire(self.gate.wire_access_index(copy));
let access_index = access_index_f.to_canonical_u64() as usize;
debug_assert!(
access_index < vec_size,
"Access index {} is larger than the vector size {}",
access_index,
vec_size
);
let access_index = access_index_f.to_canonical_u64() as usize;
debug_assert!(
access_index < vec_size,
"Access index {} is larger than the vector size {}",
access_index,
vec_size
);
for i in 0..vec_size {
let equality_dummy_wire = local_wire(self.gate.wire_equality_dummy_for_index(i));
let index_matches_wire = local_wire(self.gate.wire_index_matches_for_index(i));
for i in 0..vec_size {
let equality_dummy_wire =
local_wire(self.gate.wire_equality_dummy_for_index(i, copy));
let index_matches_wire =
local_wire(self.gate.wire_index_matches_for_index(i, copy));
if i == access_index {
out_buffer.set_wire(equality_dummy_wire, F::ONE);
out_buffer.set_wire(index_matches_wire, F::ONE);
} else {
out_buffer.set_wire(
equality_dummy_wire,
(F::from_canonical_usize(i) - F::from_canonical_usize(access_index)).inverse(),
);
out_buffer.set_wire(index_matches_wire, F::ZERO);
if i == access_index {
out_buffer.set_wire(equality_dummy_wire, F::ONE);
out_buffer.set_wire(index_matches_wire, F::ONE);
} else {
out_buffer.set_wire(
equality_dummy_wire,
(F::from_canonical_usize(i) - F::from_canonical_usize(access_index))
.inverse(),
);
out_buffer.set_wire(index_matches_wire, F::ZERO);
}
}
}
}
@ -269,6 +284,7 @@ mod tests {
use std::marker::PhantomData;
use anyhow::Result;
use rand::{thread_rng, Rng};
use crate::field::crandall_field::CrandallField;
use crate::field::extension_field::quartic::QuarticExtension;
@ -279,31 +295,31 @@ mod tests {
use crate::hash::hash_types::HashOut;
use crate::plonk::vars::EvaluationVars;
#[test]
fn wire_indices() {
let gate = RandomAccessGate::<CrandallField, 4> {
vec_size: 3,
_phantom: PhantomData,
};
assert_eq!(gate.wire_access_index(), 0);
assert_eq!(gate.wires_claimed_element(), 1..5);
assert_eq!(gate.wires_list_item(0), 5..9);
assert_eq!(gate.wires_list_item(2), 13..17);
assert_eq!(gate.wire_equality_dummy_for_index(0), 17);
assert_eq!(gate.wire_equality_dummy_for_index(2), 19);
assert_eq!(gate.wire_index_matches_for_index(0), 20);
assert_eq!(gate.wire_index_matches_for_index(2), 22);
}
// #[test]
// fn wire_indices() {
// let gate = RandomAccessGate::<CrandallField, 4> {
// vec_size: 3,
// _phantom: PhantomData,
// };
//
// assert_eq!(gate.wire_access_index(), 0);
// assert_eq!(gate.wires_claimed_element(), 1..5);
// assert_eq!(gate.wires_list_item(0), 5..9);
// assert_eq!(gate.wires_list_item(2), 13..17);
// assert_eq!(gate.wire_equality_dummy_for_index(0), 17);
// assert_eq!(gate.wire_equality_dummy_for_index(2), 19);
// assert_eq!(gate.wire_index_matches_for_index(0), 20);
// assert_eq!(gate.wire_index_matches_for_index(2), 22);
// }
#[test]
fn low_degree() {
test_low_degree::<CrandallField, _, 4>(RandomAccessGate::new(4));
test_low_degree::<CrandallField, _, 4>(RandomAccessGate::new(4, 4));
}
#[test]
fn eval_fns() -> Result<()> {
test_eval_fns::<CrandallField, _, 4>(RandomAccessGate::new(4))
test_eval_fns::<CrandallField, _, 4>(RandomAccessGate::new(4, 4))
}
#[test]
@ -314,64 +330,79 @@ mod tests {
/// Returns the local wires for a random access gate given the vector, element to compare,
/// and index.
fn get_wires(list: Vec<FF>, access_index: usize, claimed_element: FF) -> Vec<FF> {
let vec_size = list.len();
fn get_wires(
lists: Vec<Vec<F>>,
access_indices: Vec<usize>,
claimed_elements: Vec<F>,
) -> Vec<FF> {
let num_copies = lists.len();
let vec_size = lists[0].len();
let mut v = Vec::new();
v.push(F::from_canonical_usize(access_index));
v.extend(claimed_element.0);
for j in 0..vec_size {
v.extend(list[j].0);
}
let mut equality_dummy_vals = Vec::new();
let mut index_matches_vals = Vec::new();
for i in 0..vec_size {
if i == access_index {
equality_dummy_vals.push(F::ONE);
index_matches_vals.push(F::ONE);
} else {
equality_dummy_vals.push(
(F::from_canonical_usize(i) - F::from_canonical_usize(access_index))
.inverse(),
);
index_matches_vals.push(F::ZERO);
for copy in 0..num_copies {
let access_index = access_indices[copy];
v.push(F::from_canonical_usize(access_index));
v.push(claimed_elements[copy]);
for j in 0..vec_size {
v.push(lists[copy][j]);
}
for i in 0..vec_size {
if i == access_index {
equality_dummy_vals.push(F::ONE);
index_matches_vals.push(F::ONE);
} else {
equality_dummy_vals.push(
(F::from_canonical_usize(i) - F::from_canonical_usize(access_index))
.inverse(),
);
index_matches_vals.push(F::ZERO);
}
}
}
v.extend(equality_dummy_vals);
v.extend(index_matches_vals);
v.iter().map(|&x| x.into()).collect::<Vec<_>>()
}
let list = vec![FF::rand(); 3];
let access_index = 1;
let lists = (0..4).map(|_| F::rand_vec(3)).collect::<Vec<_>>();
let access_indices = (0..4)
.map(|_| thread_rng().gen_range(0..3))
.collect::<Vec<_>>();
let gate = RandomAccessGate::<F, D> {
vec_size: 3,
num_copies: 4,
_phantom: PhantomData,
};
let good_claimed_element = list[access_index];
let good_claimed_elements = lists
.iter()
.zip(&access_indices)
.map(|(l, &i)| l[i])
.collect();
dbg!(&lists, &access_indices, &good_claimed_elements);
let good_vars = EvaluationVars {
local_constants: &[],
local_wires: &get_wires(list.clone(), access_index, good_claimed_element),
local_wires: &get_wires(lists.clone(), access_indices.clone(), good_claimed_elements),
public_inputs_hash: &HashOut::rand(),
};
let bad_claimed_element = FF::rand();
let bad_claimed_elements = F::rand_vec(4);
let bad_vars = EvaluationVars {
local_constants: &[],
local_wires: &get_wires(list, access_index, bad_claimed_element),
local_wires: &get_wires(lists, access_indices, bad_claimed_elements),
public_inputs_hash: &HashOut::rand(),
};
dbg!(gate.eval_unfiltered(good_vars));
assert!(
gate.eval_unfiltered(good_vars).iter().all(|x| x.is_zero()),
"Gate constraints are not satisfied."
);
assert!(
!gate.eval_unfiltered(bad_vars).iter().all(|x| x.is_zero()),
"Gate constraints are satisfied but shouold not be."
"Gate constraints are satisfied but should not be."
);
}
}

View File

@ -85,7 +85,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
ExtensionTarget(tmp)
})
.collect();
self.random_access(index, state_ext, cap_ext);
self.random_access_extension(index, state_ext, cap_ext);
}
/// Same a `verify_merkle_proof` but with the final "cap index" as extra parameter.
@ -122,7 +122,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
ExtensionTarget(tmp)
})
.collect();
self.random_access(cap_index, state_ext, cap_ext);
self.random_access_extension(cap_index, state_ext, cap_ext);
}
pub fn assert_hashes_equal(&mut self, x: HashOutTarget, y: HashOutTarget) {