plonky2/src/fri.rs
2021-04-22 15:50:08 +02:00

335 lines
12 KiB
Rust

use crate::field::fft::fft;
use crate::field::field::Field;
use crate::hash::hash_n_to_1;
use crate::merkle_proofs::verify_merkle_proof;
use crate::merkle_tree::MerkleTree;
use crate::plonk_challenger::Challenger;
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
use crate::proof::{FriEvaluations, FriMerkleProofs, FriProof, FriQueryRound};
use crate::util::log2_strict;
use anyhow::{ensure, Result};
/// Somewhat arbitrary. Smaller values will increase delta, but with diminishing returns,
/// while increasing L, potentially requiring more challenge points.
const EPSILON: f64 = 0.01;
struct FriConfig {
proof_of_work_bits: u32,
/// The arity of each FRI reduction step, expressed (i.e. the log2 of the actual arity).
/// For example, `[3, 2, 1]` would describe a FRI reduction tree with 8-to-1 reduction, then
/// a 4-to-1 reduction, then a 2-to-1 reduction. After these reductions, the reduced polynomial
/// is sent directly.
reduction_arity_bits: Vec<usize>,
/// Number of reductions in the FRI protocol. So if the original domain has size `2^n`,
/// then the final domain will have size `2^(n-reduction_count)`.
reduction_count: usize,
/// Number of query rounds to perform.
num_query_rounds: usize,
}
fn fri_delta(rate_log: usize, conjecture: bool) -> f64 {
let rate = (1 << rate_log) as f64;
if conjecture {
// See Conjecture 2.3 in DEEP-FRI.
1.0 - rate - EPSILON
} else {
// See the Johnson radius.
1.0 - rate.sqrt() - EPSILON
}
}
fn fri_l(codeword_len: usize, rate_log: usize, conjecture: bool) -> f64 {
let rate = (1 << rate_log) as f64;
if conjecture {
// See Conjecture 2.3 in DEEP-FRI.
// We assume the conjecture holds with a constant of 1 (as do other STARK implementations).
(codeword_len as f64) / EPSILON
} else {
// See the Johnson bound.
1.0 / (2.0 * EPSILON * rate.sqrt())
}
}
// TODO: Different arity + PoW.
/// Builds a FRI proof.
fn fri_proof<F: Field>(
// Coefficients of the polynomial on which the LDT is performed.
// Only the first `1/rate` coefficients are non-zero.
polynomial_coeffs: &PolynomialCoeffs<F>,
// Evaluation of the polynomial on the large domain.
polynomial_values: &PolynomialValues<F>,
challenger: &mut Challenger<F>,
config: &FriConfig,
) -> FriProof<F> {
let n = polynomial_values.values.len();
assert_eq!(polynomial_coeffs.coeffs.len(), n);
// Commit phase
let (trees, final_coeffs) =
fri_committed_trees(polynomial_coeffs, polynomial_values, challenger, config);
let current_hash = challenger.get_challenge();
let pow_witness = fri_proof_of_work(current_hash, config);
// Query phase
let query_round_proofs = fri_query_rounds(&trees, challenger, n, config);
FriProof {
commit_phase_merkle_roots: trees.iter().map(|t| t.root).collect(),
// TODO: Fix this
initial_merkle_proofs: vec![],
query_round_proofs,
final_poly: final_coeffs,
pow_witness,
}
}
fn fri_committed_trees<F: Field>(
polynomial_coeffs: &PolynomialCoeffs<F>,
polynomial_values: &PolynomialValues<F>,
challenger: &mut Challenger<F>,
config: &FriConfig,
) -> (Vec<MerkleTree<F>>, PolynomialCoeffs<F>) {
let mut trees = vec![MerkleTree::new(
polynomial_values.values.iter().map(|&v| vec![v]).collect(),
true,
)];
let mut coeffs = polynomial_coeffs.clone();
let mut values;
challenger.observe_hash(&trees[0].root);
for _ in 0..config.reduction_count {
let beta = challenger.get_challenge();
// P(x) = P_0(x^2) + xP_1(x^2) becomes P_0(x) + beta*P_1(x)
coeffs = PolynomialCoeffs::new(
coeffs
.coeffs
.chunks_exact(2)
.map(|chunk| chunk[0] + beta * chunk[1])
.collect::<Vec<_>>(),
);
values = fft(coeffs.clone());
let tree = MerkleTree::new(values.values.iter().map(|&v| vec![v]).collect(), true);
challenger.observe_hash(&tree.root);
trees.push(tree);
}
(trees, coeffs)
}
fn fri_proof_of_work<F: Field>(current_hash: F, config: &FriConfig) -> F {
(0u64..)
.find(|&i| {
hash_n_to_1(vec![current_hash, F::from_canonical_u64(i)], false)
.to_canonical_u64()
.leading_zeros()
>= config.proof_of_work_bits
})
.map(F::from_canonical_u64)
.expect("Proof of work failed.")
}
fn fri_query_rounds<F: Field>(
trees: &[MerkleTree<F>],
challenger: &mut Challenger<F>,
n: usize,
config: &FriConfig,
) -> Vec<FriQueryRound<F>> {
let mut query_round_proofs = Vec::new();
for _ in 0..config.num_query_rounds {
let mut merkle_proofs = FriMerkleProofs { proofs: Vec::new() };
let mut evals = FriEvaluations {
first_layer: (F::ZERO, F::ZERO),
rest: Vec::new(),
};
// TODO: Challenger doesn't change between query rounds, so x is always the same.
// Once PoW is added, this should be fixed.
let x = challenger.get_challenge();
let mut domain_size = n;
let mut x_index = x.to_canonical_u64() as usize;
for (i, tree) in trees.iter().enumerate() {
let next_domain_size = domain_size >> 1;
x_index %= domain_size;
let minus_x_index = (next_domain_size + x_index) % domain_size;
if i == 0 {
// For the first layer, we need to send the evaluation at `x` and `-x`.
evals.first_layer = (tree.get(x_index)[0], tree.get(minus_x_index)[0]);
} else {
// For the other layers, we only need to send the `-x`, the one at `x` can be inferred
// by the verifier. See the `compute_evaluation` function.
evals.rest.push(tree.get(minus_x_index)[0]);
}
merkle_proofs
.proofs
.push((tree.prove(x_index), tree.prove(minus_x_index)));
domain_size = next_domain_size;
}
query_round_proofs.push(FriQueryRound {
evals,
merkle_proofs,
});
}
query_round_proofs
}
/// Computes P'(x^2) from P_even(x) and P_odd(x), where P' is the FRI reduced polynomial,
/// P_even is the even coefficients polynomial and P_odd is the odd coefficients polynomial.
fn compute_evaluation<F: Field>(x: F, last_e_x: F, last_e_x_minus: F, beta: F) -> F {
// P(x) = P_0(x^2) + xP_1(x^2)
// P'(x^2) = P_0(x^2) + beta*P_1(x^2)
// P'(x^2) = ((P(x)+P(-x))/2) + beta*((P(x)-P(-x))/(2x)
(last_e_x + last_e_x_minus) / F::TWO + beta * (last_e_x - last_e_x_minus) / (F::TWO * x)
}
fn verify_fri_proof<F: Field>(
proof: &FriProof<F>,
challenger: &mut Challenger<F>,
config: &FriConfig,
) -> Result<()> {
// Size of the LDE domain.
let n = proof.final_poly.len() << config.reduction_count;
// Recover the random betas used in the FRI reductions.
let betas = proof.commit_phase_merkle_roots[..proof.commit_phase_merkle_roots.len() - 1]
.iter()
.map(|root| {
challenger.observe_hash(root);
challenger.get_challenge()
})
.collect::<Vec<_>>();
challenger.observe_hash(proof.commit_phase_merkle_roots.last().unwrap());
// Check PoW.
ensure!(
hash_n_to_1(vec![challenger.get_challenge(), proof.pow_witness], false)
.to_canonical_u64()
.leading_zeros()
>= config.proof_of_work_bits,
"Invalid proof of work witness."
);
// Check that parameters are coherent.
ensure!(
config.num_query_rounds == proof.query_round_proofs.len(),
"Number of query rounds does not match config."
);
ensure!(
config.reduction_count > 0,
"Number of reductions should be non-zero."
);
for round in 0..config.num_query_rounds {
let round_proof = &proof.query_round_proofs[round];
let mut e_xs = Vec::new();
let x = challenger.get_challenge();
let mut domain_size = n;
let mut x_index = x.to_canonical_u64() as usize;
// `subgroup_x` is `subgroup[x_index]`, i.e., the actual field element in the domain.
let mut subgroup_x = F::primitive_root_of_unity(log2_strict(n)).exp_usize(x_index % n);
for i in 0..config.reduction_count {
x_index %= domain_size;
let next_domain_size = domain_size >> 1;
let minus_x_index = (next_domain_size + x_index) % domain_size;
let (e_x, e_x_minus, merkle_proof, merkle_proof_minus) = if i == 0 {
let (e_x, e_x_minus) = round_proof.evals.first_layer;
let (merkle_proof, merkle_proof_minus) = &round_proof.merkle_proofs.proofs[i];
e_xs.push((e_x, e_x_minus));
(e_x, e_x_minus, merkle_proof, merkle_proof_minus)
} else {
let (last_e_x, last_e_x_minus) = e_xs[i - 1];
let e_x = compute_evaluation(subgroup_x, last_e_x, last_e_x_minus, betas[i - 1]);
let e_x_minus = round_proof.evals.rest[i - 1];
let (merkle_proof, merkle_proof_minus) = &round_proof.merkle_proofs.proofs[i];
e_xs.push((e_x, e_x_minus));
(e_x, e_x_minus, merkle_proof, merkle_proof_minus)
};
verify_merkle_proof(
vec![e_x],
x_index,
proof.commit_phase_merkle_roots[i],
merkle_proof,
true,
)?;
verify_merkle_proof(
vec![e_x_minus],
minus_x_index,
proof.commit_phase_merkle_roots[i],
merkle_proof_minus,
true,
)?;
if i > 0 {
subgroup_x = subgroup_x.square();
}
domain_size = next_domain_size;
}
let (last_e_x, last_e_x_minus) = e_xs[config.reduction_count - 1];
let purported_eval = compute_evaluation(
subgroup_x,
last_e_x,
last_e_x_minus,
betas[config.reduction_count - 1],
);
// Final check of FRI. After all the reductions, we check that the final polynomial is equal
// to the one sent by the prover.
ensure!(
proof.final_poly.eval(subgroup_x.square()) == purported_eval,
"Final polynomial evaluation is invalid."
);
}
Ok(())
}
#[cfg(test)]
mod tests {
use super::*;
use crate::field::crandall_field::CrandallField;
use crate::field::fft::ifft;
use anyhow::Result;
fn test_fri(
degree: usize,
rate_bits: usize,
reduction_count: usize,
num_query_rounds: usize,
) -> Result<()> {
type F = CrandallField;
let n = degree;
let evals = PolynomialValues::new((0..n).map(|_| F::rand()).collect());
let lde = evals.clone().lde(rate_bits);
let config = FriConfig {
reduction_count,
num_query_rounds,
proof_of_work_bits: 2,
reduction_arity_bits: Vec::new(),
};
let mut challenger = Challenger::new();
let proof = fri_proof(&ifft(lde.clone()), &lde, &mut challenger, &config);
let mut challenger = Challenger::new();
verify_fri_proof(&proof, &mut challenger, &config)?;
Ok(())
}
#[test]
fn test_fri_multi_params() -> Result<()> {
for degree_log in 1..6 {
for rate_bits in 0..4 {
for reduction_count in 1..=(degree_log + rate_bits) {
for num_query_round in 0..4 {
test_fri(1 << degree_log, rate_bits, reduction_count, num_query_round)?;
}
}
}
}
Ok(())
}
}