use crate::field::fft::fft; use crate::field::field::Field; use crate::hash::hash_n_to_1; use crate::merkle_proofs::verify_merkle_proof; use crate::merkle_tree::MerkleTree; use crate::plonk_challenger::Challenger; use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues}; use crate::proof::{FriEvaluations, FriMerkleProofs, FriProof, FriQueryRound}; use crate::util::log2_strict; use anyhow::{ensure, Result}; /// Somewhat arbitrary. Smaller values will increase delta, but with diminishing returns, /// while increasing L, potentially requiring more challenge points. const EPSILON: f64 = 0.01; struct FriConfig { proof_of_work_bits: u32, /// The arity of each FRI reduction step, expressed (i.e. the log2 of the actual arity). /// For example, `[3, 2, 1]` would describe a FRI reduction tree with 8-to-1 reduction, then /// a 4-to-1 reduction, then a 2-to-1 reduction. After these reductions, the reduced polynomial /// is sent directly. reduction_arity_bits: Vec, /// Number of reductions in the FRI protocol. So if the original domain has size `2^n`, /// then the final domain will have size `2^(n-reduction_count)`. reduction_count: usize, /// Number of query rounds to perform. num_query_rounds: usize, } fn fri_delta(rate_log: usize, conjecture: bool) -> f64 { let rate = (1 << rate_log) as f64; if conjecture { // See Conjecture 2.3 in DEEP-FRI. 1.0 - rate - EPSILON } else { // See the Johnson radius. 1.0 - rate.sqrt() - EPSILON } } fn fri_l(codeword_len: usize, rate_log: usize, conjecture: bool) -> f64 { let rate = (1 << rate_log) as f64; if conjecture { // See Conjecture 2.3 in DEEP-FRI. // We assume the conjecture holds with a constant of 1 (as do other STARK implementations). (codeword_len as f64) / EPSILON } else { // See the Johnson bound. 1.0 / (2.0 * EPSILON * rate.sqrt()) } } // TODO: Different arity + PoW. /// Builds a FRI proof. fn fri_proof( // Coefficients of the polynomial on which the LDT is performed. // Only the first `1/rate` coefficients are non-zero. polynomial_coeffs: &PolynomialCoeffs, // Evaluation of the polynomial on the large domain. polynomial_values: &PolynomialValues, challenger: &mut Challenger, config: &FriConfig, ) -> FriProof { let n = polynomial_values.values.len(); assert_eq!(polynomial_coeffs.coeffs.len(), n); // Commit phase let (trees, final_coeffs) = fri_committed_trees(polynomial_coeffs, polynomial_values, challenger, config); let current_hash = challenger.get_challenge(); let pow_witness = fri_proof_of_work(current_hash, config); // Query phase let query_round_proofs = fri_query_rounds(&trees, challenger, n, config); FriProof { commit_phase_merkle_roots: trees.iter().map(|t| t.root).collect(), // TODO: Fix this initial_merkle_proofs: vec![], query_round_proofs, final_poly: final_coeffs, pow_witness, } } fn fri_committed_trees( polynomial_coeffs: &PolynomialCoeffs, polynomial_values: &PolynomialValues, challenger: &mut Challenger, config: &FriConfig, ) -> (Vec>, PolynomialCoeffs) { let mut trees = vec![MerkleTree::new( polynomial_values.values.iter().map(|&v| vec![v]).collect(), true, )]; let mut coeffs = polynomial_coeffs.clone(); let mut values; challenger.observe_hash(&trees[0].root); for _ in 0..config.reduction_count { let beta = challenger.get_challenge(); // P(x) = P_0(x^2) + xP_1(x^2) becomes P_0(x) + beta*P_1(x) coeffs = PolynomialCoeffs::new( coeffs .coeffs .chunks_exact(2) .map(|chunk| chunk[0] + beta * chunk[1]) .collect::>(), ); values = fft(coeffs.clone()); let tree = MerkleTree::new(values.values.iter().map(|&v| vec![v]).collect(), true); challenger.observe_hash(&tree.root); trees.push(tree); } (trees, coeffs) } fn fri_proof_of_work(current_hash: F, config: &FriConfig) -> F { (0u64..) .find(|&i| { hash_n_to_1(vec![current_hash, F::from_canonical_u64(i)], false) .to_canonical_u64() .leading_zeros() >= config.proof_of_work_bits }) .map(F::from_canonical_u64) .expect("Proof of work failed.") } fn fri_query_rounds( trees: &[MerkleTree], challenger: &mut Challenger, n: usize, config: &FriConfig, ) -> Vec> { let mut query_round_proofs = Vec::new(); for _ in 0..config.num_query_rounds { let mut merkle_proofs = FriMerkleProofs { proofs: Vec::new() }; let mut evals = FriEvaluations { first_layer: (F::ZERO, F::ZERO), rest: Vec::new(), }; // TODO: Challenger doesn't change between query rounds, so x is always the same. // Once PoW is added, this should be fixed. let x = challenger.get_challenge(); let mut domain_size = n; let mut x_index = x.to_canonical_u64() as usize; for (i, tree) in trees.iter().enumerate() { let next_domain_size = domain_size >> 1; x_index %= domain_size; let minus_x_index = (next_domain_size + x_index) % domain_size; if i == 0 { // For the first layer, we need to send the evaluation at `x` and `-x`. evals.first_layer = (tree.get(x_index)[0], tree.get(minus_x_index)[0]); } else { // For the other layers, we only need to send the `-x`, the one at `x` can be inferred // by the verifier. See the `compute_evaluation` function. evals.rest.push(tree.get(minus_x_index)[0]); } merkle_proofs .proofs .push((tree.prove(x_index), tree.prove(minus_x_index))); domain_size = next_domain_size; } query_round_proofs.push(FriQueryRound { evals, merkle_proofs, }); } query_round_proofs } /// Computes P'(x^2) from P_even(x) and P_odd(x), where P' is the FRI reduced polynomial, /// P_even is the even coefficients polynomial and P_odd is the odd coefficients polynomial. fn compute_evaluation(x: F, last_e_x: F, last_e_x_minus: F, beta: F) -> F { // P(x) = P_0(x^2) + xP_1(x^2) // P'(x^2) = P_0(x^2) + beta*P_1(x^2) // P'(x^2) = ((P(x)+P(-x))/2) + beta*((P(x)-P(-x))/(2x) (last_e_x + last_e_x_minus) / F::TWO + beta * (last_e_x - last_e_x_minus) / (F::TWO * x) } fn verify_fri_proof( proof: &FriProof, challenger: &mut Challenger, config: &FriConfig, ) -> Result<()> { // Size of the LDE domain. let n = proof.final_poly.len() << config.reduction_count; // Recover the random betas used in the FRI reductions. let betas = proof.commit_phase_merkle_roots[..proof.commit_phase_merkle_roots.len() - 1] .iter() .map(|root| { challenger.observe_hash(root); challenger.get_challenge() }) .collect::>(); challenger.observe_hash(proof.commit_phase_merkle_roots.last().unwrap()); // Check PoW. ensure!( hash_n_to_1(vec![challenger.get_challenge(), proof.pow_witness], false) .to_canonical_u64() .leading_zeros() >= config.proof_of_work_bits, "Invalid proof of work witness." ); // Check that parameters are coherent. ensure!( config.num_query_rounds == proof.query_round_proofs.len(), "Number of query rounds does not match config." ); ensure!( config.reduction_count > 0, "Number of reductions should be non-zero." ); for round in 0..config.num_query_rounds { let round_proof = &proof.query_round_proofs[round]; let mut e_xs = Vec::new(); let x = challenger.get_challenge(); let mut domain_size = n; let mut x_index = x.to_canonical_u64() as usize; // `subgroup_x` is `subgroup[x_index]`, i.e., the actual field element in the domain. let mut subgroup_x = F::primitive_root_of_unity(log2_strict(n)).exp_usize(x_index % n); for i in 0..config.reduction_count { x_index %= domain_size; let next_domain_size = domain_size >> 1; let minus_x_index = (next_domain_size + x_index) % domain_size; let (e_x, e_x_minus, merkle_proof, merkle_proof_minus) = if i == 0 { let (e_x, e_x_minus) = round_proof.evals.first_layer; let (merkle_proof, merkle_proof_minus) = &round_proof.merkle_proofs.proofs[i]; e_xs.push((e_x, e_x_minus)); (e_x, e_x_minus, merkle_proof, merkle_proof_minus) } else { let (last_e_x, last_e_x_minus) = e_xs[i - 1]; let e_x = compute_evaluation(subgroup_x, last_e_x, last_e_x_minus, betas[i - 1]); let e_x_minus = round_proof.evals.rest[i - 1]; let (merkle_proof, merkle_proof_minus) = &round_proof.merkle_proofs.proofs[i]; e_xs.push((e_x, e_x_minus)); (e_x, e_x_minus, merkle_proof, merkle_proof_minus) }; verify_merkle_proof( vec![e_x], x_index, proof.commit_phase_merkle_roots[i], merkle_proof, true, )?; verify_merkle_proof( vec![e_x_minus], minus_x_index, proof.commit_phase_merkle_roots[i], merkle_proof_minus, true, )?; if i > 0 { subgroup_x = subgroup_x.square(); } domain_size = next_domain_size; } let (last_e_x, last_e_x_minus) = e_xs[config.reduction_count - 1]; let purported_eval = compute_evaluation( subgroup_x, last_e_x, last_e_x_minus, betas[config.reduction_count - 1], ); // Final check of FRI. After all the reductions, we check that the final polynomial is equal // to the one sent by the prover. ensure!( proof.final_poly.eval(subgroup_x.square()) == purported_eval, "Final polynomial evaluation is invalid." ); } Ok(()) } #[cfg(test)] mod tests { use super::*; use crate::field::crandall_field::CrandallField; use crate::field::fft::ifft; use anyhow::Result; fn test_fri( degree: usize, rate_bits: usize, reduction_count: usize, num_query_rounds: usize, ) -> Result<()> { type F = CrandallField; let n = degree; let evals = PolynomialValues::new((0..n).map(|_| F::rand()).collect()); let lde = evals.clone().lde(rate_bits); let config = FriConfig { reduction_count, num_query_rounds, proof_of_work_bits: 2, reduction_arity_bits: Vec::new(), }; let mut challenger = Challenger::new(); let proof = fri_proof(&ifft(lde.clone()), &lde, &mut challenger, &config); let mut challenger = Challenger::new(); verify_fri_proof(&proof, &mut challenger, &config)?; Ok(()) } #[test] fn test_fri_multi_params() -> Result<()> { for degree_log in 1..6 { for rate_bits in 0..4 { for reduction_count in 1..=(degree_log + rate_bits) { for num_query_round in 0..4 { test_fri(1 << degree_log, rate_bits, reduction_count, num_query_round)?; } } } } Ok(()) } }