plonky2/src/fri/commitment.rs
2021-11-30 20:17:34 +01:00

253 lines
8.3 KiB
Rust

use rayon::prelude::*;
use crate::field::extension_field::Extendable;
use crate::field::fft::FftRootTable;
use crate::field::field_types::{Field, RichField};
use crate::fri::proof::FriProof;
use crate::fri::prover::fri_proof;
use crate::hash::merkle_tree::MerkleTree;
use crate::iop::challenger::Challenger;
use crate::plonk::circuit_data::CommonCircuitData;
use crate::plonk::plonk_common::PlonkPolynomials;
use crate::plonk::proof::OpeningSet;
use crate::polynomial::{PolynomialCoeffs, PolynomialValues};
use crate::timed;
use crate::util::reducing::ReducingFactor;
use crate::util::timing::TimingTree;
use crate::util::{log2_strict, reverse_bits, reverse_index_bits_in_place, transpose};
/// Four (~64 bit) field elements gives ~128 bit security.
pub const SALT_SIZE: usize = 4;
/// Represents a batch FRI based commitment to a list of polynomials.
pub struct PolynomialBatchCommitment<F: RichField> {
pub polynomials: Vec<PolynomialCoeffs<F>>,
pub merkle_tree: MerkleTree<F>,
pub degree_log: usize,
pub rate_bits: usize,
pub blinding: bool,
}
impl<F: RichField> PolynomialBatchCommitment<F> {
/// Creates a list polynomial commitment for the polynomials interpolating the values in `values`.
pub(crate) fn from_values(
values: Vec<PolynomialValues<F>>,
rate_bits: usize,
blinding: bool,
cap_height: usize,
timing: &mut TimingTree,
fft_root_table: Option<&FftRootTable<F>>,
) -> Self {
let coeffs = timed!(
timing,
"IFFT",
values.par_iter().map(|v| v.ifft()).collect::<Vec<_>>()
);
Self::from_coeffs(
coeffs,
rate_bits,
blinding,
cap_height,
timing,
fft_root_table,
)
}
/// Creates a list polynomial commitment for the polynomials `polynomials`.
pub(crate) fn from_coeffs(
polynomials: Vec<PolynomialCoeffs<F>>,
rate_bits: usize,
blinding: bool,
cap_height: usize,
timing: &mut TimingTree,
fft_root_table: Option<&FftRootTable<F>>,
) -> Self {
let degree = polynomials[0].len();
let lde_values = timed!(
timing,
"FFT + blinding",
Self::lde_values(&polynomials, rate_bits, blinding, fft_root_table)
);
let mut leaves = timed!(timing, "transpose LDEs", transpose(&lde_values));
reverse_index_bits_in_place(&mut leaves);
let merkle_tree = timed!(
timing,
"build Merkle tree",
MerkleTree::new(leaves, cap_height)
);
Self {
polynomials,
merkle_tree,
degree_log: log2_strict(degree),
rate_bits,
blinding,
}
}
fn lde_values(
polynomials: &[PolynomialCoeffs<F>],
rate_bits: usize,
blinding: bool,
fft_root_table: Option<&FftRootTable<F>>,
) -> Vec<Vec<F>> {
let degree = polynomials[0].len();
// If blinding, salt with two random elements to each leaf vector.
let salt_size = if blinding { SALT_SIZE } else { 0 };
polynomials
.par_iter()
.map(|p| {
assert_eq!(p.len(), degree, "Polynomial degrees inconsistent");
p.lde(rate_bits)
.coset_fft_with_options(F::coset_shift(), Some(rate_bits), fft_root_table)
.values
})
.chain(
(0..salt_size)
.into_par_iter()
.map(|_| F::rand_vec(degree << rate_bits)),
)
.collect()
}
pub fn get_lde_values(&self, index: usize) -> &[F] {
let index = reverse_bits(index, self.degree_log + self.rate_bits);
let slice = &self.merkle_tree.leaves[index];
&slice[..slice.len() - if self.blinding { SALT_SIZE } else { 0 }]
}
/// Takes the commitments to the constants - sigmas - wires - zs - quotient — polynomials,
/// and an opening point `zeta` and produces a batched opening proof + opening set.
pub(crate) fn open_plonk<const D: usize>(
commitments: &[&Self; 4],
zeta: F::Extension,
challenger: &mut Challenger<F>,
common_data: &CommonCircuitData<F, D>,
timing: &mut TimingTree,
) -> (FriProof<F, D>, OpeningSet<F, D>)
where
F: RichField + Extendable<D>,
{
let config = &common_data.config;
assert!(D > 1, "Not implemented for D=1.");
let degree_log = commitments[0].degree_log;
let g = F::Extension::primitive_root_of_unity(degree_log);
for p in &[zeta, g * zeta] {
assert_ne!(
p.exp_u64(1 << degree_log as u64),
F::Extension::ONE,
"Opening point is in the subgroup."
);
}
let os = timed!(
timing,
"construct the opening set",
OpeningSet::new(
zeta,
g,
commitments[0],
commitments[1],
commitments[2],
commitments[3],
common_data,
)
);
challenger.observe_opening_set(&os);
let alpha = challenger.get_extension_challenge();
let mut alpha = ReducingFactor::new(alpha);
// Final low-degree polynomial that goes into FRI.
let mut final_poly = PolynomialCoeffs::empty();
let mut zs_polys = commitments[PlonkPolynomials::ZS_PARTIAL_PRODUCTS.index]
.polynomials
.iter()
.collect::<Vec<_>>();
let partial_products_polys = zs_polys.split_off(common_data.zs_range().end);
// Polynomials opened at a single point.
let single_polys = [
PlonkPolynomials::CONSTANTS_SIGMAS,
PlonkPolynomials::WIRES,
PlonkPolynomials::QUOTIENT,
]
.iter()
.flat_map(|&p| &commitments[p.index].polynomials)
.chain(partial_products_polys);
let single_composition_poly = timed!(
timing,
"reduce single polys",
alpha.reduce_polys_base(single_polys)
);
let single_quotient = Self::compute_quotient([zeta], single_composition_poly);
final_poly += single_quotient;
alpha.reset();
// Zs polynomials are opened at `zeta` and `g*zeta`.
let zs_composition_poly = timed!(
timing,
"reduce Z polys",
alpha.reduce_polys_base(zs_polys.into_iter())
);
let zs_quotient = Self::compute_quotient([zeta, g * zeta], zs_composition_poly);
alpha.shift_poly(&mut final_poly);
final_poly += zs_quotient;
let lde_final_poly = final_poly.lde(config.rate_bits);
let lde_final_values = timed!(
timing,
&format!("perform final FFT {}", lde_final_poly.len()),
lde_final_poly.coset_fft(F::coset_shift().into())
);
let fri_proof = fri_proof(
&commitments
.par_iter()
.map(|c| &c.merkle_tree)
.collect::<Vec<_>>(),
lde_final_poly,
lde_final_values,
challenger,
common_data,
timing,
);
(fri_proof, os)
}
/// Given `points=(x_i)`, `evals=(y_i)` and `poly=P` with `P(x_i)=y_i`, computes the polynomial
/// `Q=(P-I)/Z` where `I` interpolates `(x_i, y_i)` and `Z` is the vanishing polynomial on `(x_i)`.
fn compute_quotient<const D: usize, const N: usize>(
points: [F::Extension; N],
poly: PolynomialCoeffs<F::Extension>,
) -> PolynomialCoeffs<F::Extension>
where
F: Extendable<D>,
{
let quotient = if N == 1 {
poly.divide_by_linear(points[0]).0
} else if N == 2 {
// The denominator is `(X - p0)(X - p1) = p0 p1 - (p0 + p1) X + X^2`.
let denominator = vec![
points[0] * points[1],
-points[0] - points[1],
F::Extension::ONE,
]
.into();
poly.div_rem_long_division(&denominator).0 // Could also use `divide_by_linear` twice.
} else {
unreachable!("This shouldn't happen. Plonk should open polynomials at 1 or 2 points.")
};
quotient.padded(quotient.degree_plus_one().next_power_of_two())
}
}