use rayon::prelude::*; use crate::field::extension_field::Extendable; use crate::field::fft::FftRootTable; use crate::field::field_types::{Field, RichField}; use crate::fri::proof::FriProof; use crate::fri::prover::fri_proof; use crate::hash::merkle_tree::MerkleTree; use crate::iop::challenger::Challenger; use crate::plonk::circuit_data::CommonCircuitData; use crate::plonk::plonk_common::PlonkPolynomials; use crate::plonk::proof::OpeningSet; use crate::polynomial::{PolynomialCoeffs, PolynomialValues}; use crate::timed; use crate::util::reducing::ReducingFactor; use crate::util::timing::TimingTree; use crate::util::{log2_strict, reverse_bits, reverse_index_bits_in_place, transpose}; /// Four (~64 bit) field elements gives ~128 bit security. pub const SALT_SIZE: usize = 4; /// Represents a batch FRI based commitment to a list of polynomials. pub struct PolynomialBatchCommitment { pub polynomials: Vec>, pub merkle_tree: MerkleTree, pub degree_log: usize, pub rate_bits: usize, pub blinding: bool, } impl PolynomialBatchCommitment { /// Creates a list polynomial commitment for the polynomials interpolating the values in `values`. pub(crate) fn from_values( values: Vec>, rate_bits: usize, blinding: bool, cap_height: usize, timing: &mut TimingTree, fft_root_table: Option<&FftRootTable>, ) -> Self { let coeffs = timed!( timing, "IFFT", values.par_iter().map(|v| v.ifft()).collect::>() ); Self::from_coeffs( coeffs, rate_bits, blinding, cap_height, timing, fft_root_table, ) } /// Creates a list polynomial commitment for the polynomials `polynomials`. pub(crate) fn from_coeffs( polynomials: Vec>, rate_bits: usize, blinding: bool, cap_height: usize, timing: &mut TimingTree, fft_root_table: Option<&FftRootTable>, ) -> Self { let degree = polynomials[0].len(); let lde_values = timed!( timing, "FFT + blinding", Self::lde_values(&polynomials, rate_bits, blinding, fft_root_table) ); let mut leaves = timed!(timing, "transpose LDEs", transpose(&lde_values)); reverse_index_bits_in_place(&mut leaves); let merkle_tree = timed!( timing, "build Merkle tree", MerkleTree::new(leaves, cap_height) ); Self { polynomials, merkle_tree, degree_log: log2_strict(degree), rate_bits, blinding, } } fn lde_values( polynomials: &[PolynomialCoeffs], rate_bits: usize, blinding: bool, fft_root_table: Option<&FftRootTable>, ) -> Vec> { let degree = polynomials[0].len(); // If blinding, salt with two random elements to each leaf vector. let salt_size = if blinding { SALT_SIZE } else { 0 }; polynomials .par_iter() .map(|p| { assert_eq!(p.len(), degree, "Polynomial degrees inconsistent"); p.lde(rate_bits) .coset_fft_with_options(F::coset_shift(), Some(rate_bits), fft_root_table) .values }) .chain( (0..salt_size) .into_par_iter() .map(|_| F::rand_vec(degree << rate_bits)), ) .collect() } pub fn get_lde_values(&self, index: usize) -> &[F] { let index = reverse_bits(index, self.degree_log + self.rate_bits); let slice = &self.merkle_tree.leaves[index]; &slice[..slice.len() - if self.blinding { SALT_SIZE } else { 0 }] } /// Takes the commitments to the constants - sigmas - wires - zs - quotient — polynomials, /// and an opening point `zeta` and produces a batched opening proof + opening set. pub(crate) fn open_plonk( commitments: &[&Self; 4], zeta: F::Extension, challenger: &mut Challenger, common_data: &CommonCircuitData, timing: &mut TimingTree, ) -> (FriProof, OpeningSet) where F: RichField + Extendable, { let config = &common_data.config; assert!(D > 1, "Not implemented for D=1."); let degree_log = commitments[0].degree_log; let g = F::Extension::primitive_root_of_unity(degree_log); for p in &[zeta, g * zeta] { assert_ne!( p.exp_u64(1 << degree_log as u64), F::Extension::ONE, "Opening point is in the subgroup." ); } let os = timed!( timing, "construct the opening set", OpeningSet::new( zeta, g, commitments[0], commitments[1], commitments[2], commitments[3], common_data, ) ); challenger.observe_opening_set(&os); let alpha = challenger.get_extension_challenge(); let mut alpha = ReducingFactor::new(alpha); // Final low-degree polynomial that goes into FRI. let mut final_poly = PolynomialCoeffs::empty(); let mut zs_polys = commitments[PlonkPolynomials::ZS_PARTIAL_PRODUCTS.index] .polynomials .iter() .collect::>(); let partial_products_polys = zs_polys.split_off(common_data.zs_range().end); // Polynomials opened at a single point. let single_polys = [ PlonkPolynomials::CONSTANTS_SIGMAS, PlonkPolynomials::WIRES, PlonkPolynomials::QUOTIENT, ] .iter() .flat_map(|&p| &commitments[p.index].polynomials) .chain(partial_products_polys); let single_composition_poly = timed!( timing, "reduce single polys", alpha.reduce_polys_base(single_polys) ); let single_quotient = Self::compute_quotient([zeta], single_composition_poly); final_poly += single_quotient; alpha.reset(); // Zs polynomials are opened at `zeta` and `g*zeta`. let zs_composition_poly = timed!( timing, "reduce Z polys", alpha.reduce_polys_base(zs_polys.into_iter()) ); let zs_quotient = Self::compute_quotient([zeta, g * zeta], zs_composition_poly); alpha.shift_poly(&mut final_poly); final_poly += zs_quotient; let lde_final_poly = final_poly.lde(config.rate_bits); let lde_final_values = timed!( timing, &format!("perform final FFT {}", lde_final_poly.len()), lde_final_poly.coset_fft(F::coset_shift().into()) ); let fri_proof = fri_proof( &commitments .par_iter() .map(|c| &c.merkle_tree) .collect::>(), lde_final_poly, lde_final_values, challenger, common_data, timing, ); (fri_proof, os) } /// Given `points=(x_i)`, `evals=(y_i)` and `poly=P` with `P(x_i)=y_i`, computes the polynomial /// `Q=(P-I)/Z` where `I` interpolates `(x_i, y_i)` and `Z` is the vanishing polynomial on `(x_i)`. fn compute_quotient( points: [F::Extension; N], poly: PolynomialCoeffs, ) -> PolynomialCoeffs where F: Extendable, { let quotient = if N == 1 { poly.divide_by_linear(points[0]).0 } else if N == 2 { // The denominator is `(X - p0)(X - p1) = p0 p1 - (p0 + p1) X + X^2`. let denominator = vec![ points[0] * points[1], -points[0] - points[1], F::Extension::ONE, ] .into(); poly.div_rem_long_division(&denominator).0 // Could also use `divide_by_linear` twice. } else { unreachable!("This shouldn't happen. Plonk should open polynomials at 1 or 2 points.") }; quotient.padded(quotient.degree_plus_one().next_power_of_two()) } }