Hamish Ivey-Law d7bb47318c
Modular operations for the EVM arithmetic unit (#755)
* First draft of 256-bit addition.

* Update comment.

* cargo fmt

* Rename addition evaluation file.

* Port ALU logic from SZ.

* Give a name to some magic numbers.

* `addition.rs` -> `add.rs`; fix carry propagation in add; impl sub.

* Clippy.

* Combine hi and lo parts of the output.

* Implement MUL.

* Suppress Clippy's attempt to make my code even harder to read.

* Next draft of MUL.

* Make all limbs (i.e. input and output) 16-bits.

* Tidying.

* Use iterators instead of building arrays.

* Documentation.

* Clippy is wrong; also cargo fmt.

* Un-refactor equality checking, since it was wrong for sub.

* Daniel comments.

* Daniel comments.

* Rename folder 'alu' -> 'arithmetic'.

* Rename file.

* Finish changing name ALU -> Arithmetic Unit.

* Finish removing dependency on array_zip feature.

* Remove operations that will be handled elsewhere.

* Rename var; tidy up.

* Clean up columns; mark places where range-checks need to be done.

* Import all names in 'columns' to reduce verbiage.

* cargo fmt

* Fix aux_in calculation in mul.

* Remove redundant 'allow's; more precise range-check size.

* Document functions.

* Document MUL instruction verification technique.

* Initial tests for ADD.

* Minor test fixes; add test for SUB.

* Fix bugs in generate functions.

* Fix SUB verification; refactor equality verification.

* cargo fmt

* Add test for MUL and fix some bugs.

* Update doc.

* Quiet incorrect clippy error.

* Initial implementation of ADDMOD and MOD.

* Fixes to addmod.

* Update doc.

* Do 1000 random tests instead of just 1.

* Documentation fix.

* Working version of ADDMOD.

* Working version of MOD.

* Name magic number; do multiple MUL tests.

* Add code and test for special case; add some docs.

* Fix spelling mistake.

* Simplify asserts.

* Tidy comment.

* Remove unused module.

* cargo fmt

* Check that output is reduced.

* Add conversion of canonical `i64` to a `Field64`.

* Handle zero modulus within degree constraint.

* cargo fmt

* Fix some comments.

* Check that the top half of the product is zero!

* Start of refactor.

* Refactoring.

* Remove zero and reduction handling from addmod.

* Refactoring; renaming; bug fixes.

* Reuse intermediate calculations across all modular operations; don't negate quot poly unnecessarily.

* Fix bug where last elt of q*m wasn't checked.

* Refactoring.

* Move circuit poly functions to utils.rs.

* Rename ADDMOD stuff to MODULAR.

* Rename module addmod -> modular.

* Handle zero modulus.

* Verify that output is reduced.

* Implement recursive version of modular circuits.

* clippy

* Tidy up i64 -> Field conversion following Jacqui's comments.

* cargo fmt

* Improved documentation.

* Address Jacqui's comments.

* Save some gates by using builder.arithmetic_extension().
2022-10-07 17:15:50 +11:00

157 lines
5.4 KiB
Rust

use itertools::izip;
use plonky2::field::extension::Extendable;
use plonky2::field::packed::PackedField;
use plonky2::hash::hash_types::RichField;
use plonky2::iop::ext_target::ExtensionTarget;
use crate::arithmetic::add::{eval_ext_circuit_are_equal, eval_packed_generic_are_equal};
use crate::arithmetic::columns::*;
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::range_check_error;
pub(crate) fn u256_sub_br(input0: [u64; N_LIMBS], input1: [u64; N_LIMBS]) -> ([u64; N_LIMBS], u64) {
const LIMB_BOUNDARY: u64 = 1 << LIMB_BITS;
const MASK: u64 = LIMB_BOUNDARY - 1u64;
let mut output = [0u64; N_LIMBS];
let mut br = 0u64;
for (i, a, b) in izip!(0.., input0, input1) {
let d = LIMB_BOUNDARY + a - b - br;
// if a < b, then d < 2^16 so br = 1
// if a >= b, then d >= 2^16 so br = 0
br = 1u64 - (d >> LIMB_BITS);
assert!(br <= 1u64, "input limbs were larger than 16 bits");
output[i] = d & MASK;
}
(output, br)
}
pub fn generate<F: RichField>(lv: &mut [F; NUM_ARITH_COLUMNS]) {
let input0_limbs = SUB_INPUT_0.map(|c| lv[c].to_canonical_u64());
let input1_limbs = SUB_INPUT_1.map(|c| lv[c].to_canonical_u64());
let (output_limbs, _) = u256_sub_br(input0_limbs, input1_limbs);
for (&c, output_limb) in SUB_OUTPUT.iter().zip(output_limbs) {
lv[c] = F::from_canonical_u64(output_limb);
}
}
pub fn eval_packed_generic<P: PackedField>(
lv: &[P; NUM_ARITH_COLUMNS],
yield_constr: &mut ConstraintConsumer<P>,
) {
range_check_error!(SUB_INPUT_0, 16);
range_check_error!(SUB_INPUT_1, 16);
range_check_error!(SUB_OUTPUT, 16);
let is_sub = lv[IS_SUB];
let input0_limbs = SUB_INPUT_0.iter().map(|&c| lv[c]);
let input1_limbs = SUB_INPUT_1.iter().map(|&c| lv[c]);
let output_limbs = SUB_OUTPUT.iter().map(|&c| lv[c]);
let output_computed = input0_limbs.zip(input1_limbs).map(|(a, b)| a - b);
eval_packed_generic_are_equal(yield_constr, is_sub, output_limbs, output_computed);
}
#[allow(clippy::needless_collect)]
pub fn eval_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
builder: &mut plonky2::plonk::circuit_builder::CircuitBuilder<F, D>,
lv: &[ExtensionTarget<D>; NUM_ARITH_COLUMNS],
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
) {
let is_sub = lv[IS_SUB];
let input0_limbs = SUB_INPUT_0.iter().map(|&c| lv[c]);
let input1_limbs = SUB_INPUT_1.iter().map(|&c| lv[c]);
let output_limbs = SUB_OUTPUT.iter().map(|&c| lv[c]);
// Since `map` is lazy and the closure passed to it borrows
// `builder`, we can't then borrow builder again below in the call
// to `eval_ext_circuit_are_equal`. The solution is to force
// evaluation with `collect`.
let output_computed = input0_limbs
.zip(input1_limbs)
.map(|(a, b)| builder.sub_extension(a, b))
.collect::<Vec<ExtensionTarget<D>>>();
eval_ext_circuit_are_equal(
builder,
yield_constr,
is_sub,
output_limbs,
output_computed.into_iter(),
);
}
#[cfg(test)]
mod tests {
use plonky2::field::goldilocks_field::GoldilocksField;
use plonky2::field::types::Field;
use rand::{Rng, SeedableRng};
use rand_chacha::ChaCha8Rng;
use super::*;
use crate::arithmetic::columns::NUM_ARITH_COLUMNS;
use crate::constraint_consumer::ConstraintConsumer;
const N_RND_TESTS: usize = 1000;
// TODO: Should be able to refactor this test to apply to all operations.
#[test]
fn generate_eval_consistency_not_sub() {
type F = GoldilocksField;
let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25);
let mut lv = [F::default(); NUM_ARITH_COLUMNS].map(|_| F::rand_from_rng(&mut rng));
// if `IS_SUB == 0`, then the constraints should be met even
// if all values are garbage.
lv[IS_SUB] = F::ZERO;
let mut constraint_consumer = ConstraintConsumer::new(
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
GoldilocksField::ONE,
GoldilocksField::ONE,
GoldilocksField::ONE,
);
eval_packed_generic(&lv, &mut constraint_consumer);
for &acc in &constraint_consumer.constraint_accs {
assert_eq!(acc, GoldilocksField::ZERO);
}
}
#[test]
fn generate_eval_consistency_sub() {
type F = GoldilocksField;
let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25);
let mut lv = [F::default(); NUM_ARITH_COLUMNS].map(|_| F::rand_from_rng(&mut rng));
// set `IS_SUB == 1` and ensure all constraints are satisfied.
lv[IS_SUB] = F::ONE;
for _ in 0..N_RND_TESTS {
// set inputs to random values
for (&ai, bi) in SUB_INPUT_0.iter().zip(SUB_INPUT_1) {
lv[ai] = F::from_canonical_u16(rng.gen());
lv[bi] = F::from_canonical_u16(rng.gen());
}
generate(&mut lv);
let mut constraint_consumer = ConstraintConsumer::new(
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
GoldilocksField::ONE,
GoldilocksField::ONE,
GoldilocksField::ONE,
);
eval_packed_generic(&lv, &mut constraint_consumer);
for &acc in &constraint_consumer.constraint_accs {
assert_eq!(acc, GoldilocksField::ZERO);
}
}
}
}