* Automatically select FRI reduction arities
This way when a proof's degree changes, we won't need to manually update the `FriConfig`s of any recursive proofs on top of it.
For now I've added two methods of selecting arities. The first, `ConstantArityBits`, just applies a fixed reduciton arity until the degree has shrunk below a certain threshold. The second, `MinSize`, searches for the sequence of arities that minimizes proof size.
Note that this optimization is approximate -- e.g. it doesn't account for the effect of compression, and doesn't count some minor contributions to proof size, like the Merkle roots from the commit phase. It also assumes we're not using Merkle caps in serialized proofs, and that we're inferring one of the evaluations, even though we haven't made those changes yet.
I think we should generally use `ConstantArityBits` for proofs that we will recurse on, since using a single arity tends to be more recursion-friendly. We could use `MinSize` for generating final bridge proofs, since we won't do further recursion on top of those.
* Fix tests
* Feedback
* Refactor GMiMC code
Adds a sub-trait of `Field` called `GMiMCInterface`, which is similar to `PoseidonInterface`.
This lets us have different fields with different GMiMC constants in a type-safe way.
* Remove `Interface`
* Const generic for width
* Move some Field members to a Field64 subtrait
I.e. move anything specific to 64-bit fields.
Also, relatedly,
- Tweak a bunch of prover code to require `Field64`, since 64-bit stuff is used in a couple places, like the FRI proof-of-work
- Remove `bits()`, which was unused and assumed a 64-bit field
- Rename a couple methods to reflect that they're u64 variants
There are no functional changes.
* Field64 -> PrimeField
* Remove `exp_u32`, `kth_root_u32`
* PrimeField: PrimeField
* Move `to_canonical_biguint` as well
* Add back from_noncanonical_u128
* Disable ZK in large_config
Speeds up the tests from ~6m to ~1m (debug mode). `large_config` is crate-private so I don't think we need to worry about real users forgetting ZK, and I don't think ZK seems important in these tests, though we should probably have ZK enabled for a couple tests.
A couple tests need ZK or they fail; I added a TODO to look later.
This led to a few other changes:
- Fixed a bug where `trim` could truncate the final poly to a non-power-of-two length. This was improbable when ZK is on due to randomization.
- Gave a few methods access to the whole `CircuitConfig` vs `FriConfig` -- sort of necessary for the above fix, and I don't think there's much downside.
- Remove `cap_height` from `FriConfig` -- didn't really need it any more after giving more methods access to `CircuitConfig`, and having a single copy of the param feels cleaner/safer to me.
* PR feedback
No functional changes here. The biggest change was moving certain files into new directories like `plonk` and `iop` (for things like `Challenger` that could be used in STARKs or other IOPs). I also split a few files, renames, etc, but again nothing functional, so I don't think a careful review is necessary (just a sanity check).
With this approach, we don't need `Target::PublicInput`; any routable `Target` can be marked as a public input via `register_public_input`. The circuit itself hashes these targets, and routes the hash output to the first four wires of a `PublicInputGate`, which is placed at an arbitrary location in the circuit.
All gates have direct access to the purported hash of public inputs. We could think of them as accessing `PI_hash_i(x)` (as in Plonk), but these are now (four) constant functions, so they effectively have direct access to the hash itself.
`PublicInputGate` checks that its first four wires match this purported public input hash. The other gates ignore the hash.
Resolves#64.
* More routed wires for recursion
For the insertion gate, which (with a FRI arity of 4) uses 1 wire for the insertion index, D for the elemnet to insert, 3D for the original list, and 4D for the output list.
* import
* Make ZK optional
* Remove rate from FriConfig
Seems redundant, and we've had some tests break due to the two fields not matching.
* zero_knowledge: false in bench
Using `serde_cbor` for now. It's probably far from optimal, as we have many `Vec`s which I assume it will prefix with their lengths, but it's a nice and easy method for now.
- Configure FRI with a list of arities that's more appropriate for a 2^14 instance. The previous config resulted in a huge final polynomial.
- Log the blinding factors, and other logging tweaks.
- `self.gates` -> `self.gate_instances`
- Some tests were using a single binary FRI reduction, which doesn't provide enough succinctness for our blinding scheme to work. This caused `blinding_counts` to continue until it overflowed.
* Draw challenge points from the extension field
* Now building
* Misc
* Default eval_unfiltered_base
* fmt
* A few field settings
* Add to Sage
* Display tweak
* eval_filtered_base
* Quartic in bench
* Missing methods
* Fix tests
* PR feedback
... and other minor refactoring.
`bench_recursion` will be the default bin run by `cargo run`; the otheres can be selected with the `--bin` flag.
We could probably delete some of the other binaries later. E.g. `field_search` might not be useful any more. `bench_fft` should maybe be converted to a benchmark (although there are some pros and cons, e.g. the bench framework has a minimum number of runs, and isn't helpful in testing multi-core performance).