mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-03 14:23:07 +00:00
More work on polynomial commitments
This commit is contained in:
parent
bb8a68e198
commit
eb3011b02a
188
src/fri.rs
188
src/fri.rs
@ -1,13 +1,13 @@
|
||||
use crate::field::fft::fft;
|
||||
use crate::field::field::Field;
|
||||
use crate::field::lagrange::{barycentric_weights, interpolate};
|
||||
use crate::field::lagrange::{barycentric_weights, interpolant, interpolate};
|
||||
use crate::hash::hash_n_to_1;
|
||||
use crate::merkle_proofs::verify_merkle_proof;
|
||||
use crate::merkle_tree::MerkleTree;
|
||||
use crate::plonk_challenger::Challenger;
|
||||
use crate::plonk_common::reduce_with_powers;
|
||||
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
|
||||
use crate::proof::{FriProof, FriQueryRound, FriQueryStep, Hash};
|
||||
use crate::proof::{FriInitialTreeProof, FriProof, FriQueryRound, FriQueryStep, Hash};
|
||||
use crate::util::{log2_strict, reverse_bits, reverse_index_bits_in_place};
|
||||
use anyhow::{ensure, Result};
|
||||
|
||||
@ -56,32 +56,35 @@ fn fri_l(codeword_len: usize, rate_log: usize, conjecture: bool) -> f64 {
|
||||
|
||||
/// Builds a FRI proof.
|
||||
pub fn fri_proof<F: Field>(
|
||||
// Coefficients of the polynomial on which the LDT is performed.
|
||||
// Only the first `1/rate` coefficients are non-zero.
|
||||
polynomial_coeffs: &PolynomialCoeffs<F>,
|
||||
initial_merkle_trees: &[MerkleTree<F>],
|
||||
// Coefficients of the polynomial on which the LDT is performed. Only the first `1/rate` coefficients are non-zero.
|
||||
lde_polynomial_coeffs: &PolynomialCoeffs<F>,
|
||||
// Evaluation of the polynomial on the large domain.
|
||||
polynomial_values: &PolynomialValues<F>,
|
||||
lde_polynomial_values: &PolynomialValues<F>,
|
||||
challenger: &mut Challenger<F>,
|
||||
config: &FriConfig,
|
||||
) -> FriProof<F> {
|
||||
let n = polynomial_values.values.len();
|
||||
assert_eq!(polynomial_coeffs.coeffs.len(), n);
|
||||
let n = lde_polynomial_values.values.len();
|
||||
assert_eq!(lde_polynomial_coeffs.coeffs.len(), n);
|
||||
|
||||
// Commit phase
|
||||
let (trees, final_coeffs) =
|
||||
fri_committed_trees(polynomial_coeffs, polynomial_values, challenger, config);
|
||||
let (trees, final_coeffs) = fri_committed_trees(
|
||||
lde_polynomial_coeffs,
|
||||
lde_polynomial_values,
|
||||
challenger,
|
||||
config,
|
||||
);
|
||||
|
||||
// PoW phase
|
||||
let current_hash = challenger.get_hash();
|
||||
let pow_witness = fri_proof_of_work(current_hash, config);
|
||||
|
||||
// Query phase
|
||||
let query_round_proofs = fri_prover_query_rounds(&trees, challenger, n, config);
|
||||
let query_round_proofs =
|
||||
fri_prover_query_rounds(initial_merkle_trees, &trees, challenger, n, config);
|
||||
|
||||
FriProof {
|
||||
commit_phase_merkle_roots: trees.iter().map(|t| t.root).collect(),
|
||||
// TODO: Fix this
|
||||
initial_merkle_proofs: vec![],
|
||||
query_round_proofs,
|
||||
final_poly: final_coeffs,
|
||||
pow_witness,
|
||||
@ -180,17 +183,19 @@ fn fri_verify_proof_of_work<F: Field>(
|
||||
}
|
||||
|
||||
fn fri_prover_query_rounds<F: Field>(
|
||||
initial_merkle_trees: &[MerkleTree<F>],
|
||||
trees: &[MerkleTree<F>],
|
||||
challenger: &mut Challenger<F>,
|
||||
n: usize,
|
||||
config: &FriConfig,
|
||||
) -> Vec<FriQueryRound<F>> {
|
||||
(0..config.num_query_rounds)
|
||||
.map(|_| fri_prover_query_round(trees, challenger, n, config))
|
||||
.map(|_| fri_prover_query_round(initial_merkle_trees, trees, challenger, n, config))
|
||||
.collect()
|
||||
}
|
||||
|
||||
fn fri_prover_query_round<F: Field>(
|
||||
initial_merkle_trees: &[MerkleTree<F>],
|
||||
trees: &[MerkleTree<F>],
|
||||
challenger: &mut Challenger<F>,
|
||||
n: usize,
|
||||
@ -201,20 +206,17 @@ fn fri_prover_query_round<F: Field>(
|
||||
let x = challenger.get_challenge();
|
||||
let mut domain_size = n;
|
||||
let mut x_index = x.to_canonical_u64() as usize % n;
|
||||
let mut x_index = 0;
|
||||
let initial_proof = initial_merkle_trees
|
||||
.iter()
|
||||
.map(|t| (t.get(x_index).to_vec(), t.prove(x_index)))
|
||||
.collect::<Vec<_>>();
|
||||
for (i, tree) in trees.iter().enumerate() {
|
||||
let arity_bits = config.reduction_arity_bits[i];
|
||||
let arity = 1 << arity_bits;
|
||||
let next_domain_size = domain_size >> arity_bits;
|
||||
let evals = if i == 0 {
|
||||
// For the first layer, we need to send the evaluation at `x` too.
|
||||
tree.get(x_index >> arity_bits).to_vec()
|
||||
} else {
|
||||
// For the other layers, we don't need to send the evaluation at `x`, since it can
|
||||
// be inferred by the verifier. See the `compute_evaluation` function.
|
||||
let mut evals = tree.get(x_index >> arity_bits).to_vec();
|
||||
evals.remove(x_index & (arity - 1));
|
||||
evals
|
||||
};
|
||||
let mut evals = tree.get(x_index >> arity_bits).to_vec();
|
||||
dbg!(i, x_index, x_index & (arity - 1), &evals);
|
||||
evals.remove(x_index & (arity - 1));
|
||||
let merkle_proof = tree.prove(x_index >> arity_bits);
|
||||
|
||||
query_steps.push(FriQueryStep {
|
||||
@ -222,10 +224,15 @@ fn fri_prover_query_round<F: Field>(
|
||||
merkle_proof,
|
||||
});
|
||||
|
||||
domain_size = next_domain_size;
|
||||
domain_size >>= arity_bits;
|
||||
x_index >>= arity_bits;
|
||||
}
|
||||
FriQueryRound { steps: query_steps }
|
||||
FriQueryRound {
|
||||
initial_trees_proof: FriInitialTreeProof {
|
||||
evals_proofs: initial_proof,
|
||||
},
|
||||
steps: query_steps,
|
||||
}
|
||||
}
|
||||
|
||||
/// Computes P'(x^arity) from {P(x*g^i)}_(i=0..arity), where g is a `arity`-th root of unity
|
||||
@ -256,13 +263,25 @@ fn compute_evaluation<F: Field>(
|
||||
interpolate(&points, beta, &barycentric_weights)
|
||||
}
|
||||
|
||||
fn verify_fri_proof<F: Field>(
|
||||
pub fn verify_fri_proof<F: Field>(
|
||||
purported_degree_log: usize,
|
||||
// Point-evaluation pairs for polynomial commitments.
|
||||
points: &[(F, F)],
|
||||
// Scaling factor to combine polynomials.
|
||||
alpha: F,
|
||||
initial_merkle_roots: &[Hash<F>],
|
||||
proof: &FriProof<F>,
|
||||
challenger: &mut Challenger<F>,
|
||||
config: &FriConfig,
|
||||
) -> Result<()> {
|
||||
let total_arities = config.reduction_arity_bits.iter().sum::<usize>();
|
||||
dbg!(
|
||||
purported_degree_log,
|
||||
log2_strict(proof.final_poly.len()) + total_arities - config.rate_bits,
|
||||
log2_strict(proof.final_poly.len()),
|
||||
total_arities,
|
||||
config.rate_bits,
|
||||
);
|
||||
ensure!(
|
||||
purported_degree_log
|
||||
== log2_strict(proof.final_poly.len()) + total_arities - config.rate_bits,
|
||||
@ -296,14 +315,71 @@ fn verify_fri_proof<F: Field>(
|
||||
"Number of reductions should be non-zero."
|
||||
);
|
||||
|
||||
dbg!(&points);
|
||||
let interpolant = interpolant(points);
|
||||
for round_proof in &proof.query_round_proofs {
|
||||
fri_verifier_query_round(&proof, challenger, n, &betas, round_proof, config)?;
|
||||
fri_verifier_query_round(
|
||||
&interpolant,
|
||||
points,
|
||||
alpha,
|
||||
initial_merkle_roots,
|
||||
&proof,
|
||||
challenger,
|
||||
n,
|
||||
&betas,
|
||||
round_proof,
|
||||
config,
|
||||
)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn fri_verify_initial_proof<F: Field>(
|
||||
x_index: usize,
|
||||
proof: &FriInitialTreeProof<F>,
|
||||
initial_merkle_roots: &[Hash<F>],
|
||||
) -> Result<()> {
|
||||
for ((evals, merkle_proof), &root) in proof.evals_proofs.iter().zip(initial_merkle_roots) {
|
||||
verify_merkle_proof(evals.clone(), x_index, root, merkle_proof, false)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn fri_combine_initial<F: Field>(
|
||||
proof: &FriInitialTreeProof<F>,
|
||||
alpha: F,
|
||||
interpolant: &PolynomialCoeffs<F>,
|
||||
points: &[(F, F)],
|
||||
subgroup_x: F,
|
||||
) -> F {
|
||||
dbg!(proof
|
||||
.evals_proofs
|
||||
.iter()
|
||||
.map(|(v, _)| v)
|
||||
.collect::<Vec<_>>());
|
||||
let e = proof
|
||||
.evals_proofs
|
||||
.iter()
|
||||
.map(|(v, _)| v)
|
||||
.flatten()
|
||||
.rev()
|
||||
.fold(F::ZERO, |acc, &e| alpha * acc + e);
|
||||
dbg!(e);
|
||||
let numerator = e - interpolant.eval(subgroup_x);
|
||||
dbg!(numerator);
|
||||
dbg!(&points);
|
||||
let denominator = points.iter().fold(F::ONE, |acc, &(x, _)| subgroup_x - x);
|
||||
dbg!(denominator);
|
||||
numerator / denominator
|
||||
}
|
||||
|
||||
fn fri_verifier_query_round<F: Field>(
|
||||
interpolant: &PolynomialCoeffs<F>,
|
||||
points: &[(F, F)],
|
||||
alpha: F,
|
||||
initial_merkle_roots: &[Hash<F>],
|
||||
proof: &FriProof<F>,
|
||||
challenger: &mut Challenger<F>,
|
||||
n: usize,
|
||||
@ -311,10 +387,16 @@ fn fri_verifier_query_round<F: Field>(
|
||||
round_proof: &FriQueryRound<F>,
|
||||
config: &FriConfig,
|
||||
) -> Result<()> {
|
||||
let mut evaluations = Vec::new();
|
||||
let mut evaluations: Vec<Vec<F>> = Vec::new();
|
||||
let x = challenger.get_challenge();
|
||||
let mut domain_size = n;
|
||||
let mut x_index = x.to_canonical_u64() as usize % n;
|
||||
let mut x_index = 0;
|
||||
fri_verify_initial_proof(
|
||||
x_index,
|
||||
&round_proof.initial_trees_proof,
|
||||
initial_merkle_roots,
|
||||
)?;
|
||||
let mut old_x_index = 0;
|
||||
// `subgroup_x` is `subgroup[x_index]`, i.e., the actual field element in the domain.
|
||||
let log_n = log2_strict(n);
|
||||
@ -323,24 +405,30 @@ fn fri_verifier_query_round<F: Field>(
|
||||
for (i, &arity_bits) in config.reduction_arity_bits.iter().enumerate() {
|
||||
let arity = 1 << arity_bits;
|
||||
let next_domain_size = domain_size >> arity_bits;
|
||||
if i == 0 {
|
||||
let evals = round_proof.steps[0].evals.clone();
|
||||
evaluations.push(evals);
|
||||
let e_x = if i == 0 {
|
||||
fri_combine_initial(
|
||||
&round_proof.initial_trees_proof,
|
||||
alpha,
|
||||
interpolant,
|
||||
points,
|
||||
subgroup_x,
|
||||
)
|
||||
} else {
|
||||
let last_evals = &evaluations[i - 1];
|
||||
// Infer P(y) from {P(x)}_{x^arity=y}.
|
||||
let e_x = compute_evaluation(
|
||||
compute_evaluation(
|
||||
subgroup_x,
|
||||
old_x_index,
|
||||
config.reduction_arity_bits[i - 1],
|
||||
last_evals,
|
||||
betas[i - 1],
|
||||
);
|
||||
let mut evals = round_proof.steps[i].evals.clone();
|
||||
// Insert P(y) into the evaluation vector, since it wasn't included by the prover.
|
||||
evals.insert(x_index & (arity - 1), e_x);
|
||||
evaluations.push(evals);
|
||||
)
|
||||
};
|
||||
let mut evals = round_proof.steps[i].evals.clone();
|
||||
// Insert P(y) into the evaluation vector, since it wasn't included by the prover.
|
||||
evals.insert(x_index & (arity - 1), e_x);
|
||||
evaluations.push(evals);
|
||||
dbg!(i, &evaluations[i]);
|
||||
verify_merkle_proof(
|
||||
evaluations[i].clone(),
|
||||
x_index >> arity_bits,
|
||||
@ -409,11 +497,29 @@ mod tests {
|
||||
proof_of_work_bits: 2,
|
||||
reduction_arity_bits,
|
||||
};
|
||||
let tree = {
|
||||
let mut leaves = coset_lde
|
||||
.values
|
||||
.iter()
|
||||
.map(|&x| vec![x])
|
||||
.collect::<Vec<_>>();
|
||||
reverse_index_bits_in_place(&mut leaves);
|
||||
MerkleTree::new(leaves, false)
|
||||
};
|
||||
let root = tree.root;
|
||||
let mut challenger = Challenger::new();
|
||||
let proof = fri_proof(&coeffs, &coset_lde, &mut challenger, &config);
|
||||
let proof = fri_proof(&[tree], &coeffs, &coset_lde, &mut challenger, &config);
|
||||
|
||||
let mut challenger = Challenger::new();
|
||||
verify_fri_proof(degree_log, &proof, &mut challenger, &config)?;
|
||||
verify_fri_proof(
|
||||
degree_log,
|
||||
&[],
|
||||
F::ONE,
|
||||
&[root],
|
||||
&proof,
|
||||
&mut challenger,
|
||||
&config,
|
||||
)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@ -1,13 +1,16 @@
|
||||
use crate::field::fft::fft;
|
||||
use crate::field::field::Field;
|
||||
use crate::field::lagrange::{interpolant, interpolate};
|
||||
use crate::fri::{fri_proof, FriConfig};
|
||||
use crate::fri::{fri_proof, verify_fri_proof, FriConfig};
|
||||
use crate::merkle_proofs::verify_merkle_proof;
|
||||
use crate::merkle_tree::MerkleTree;
|
||||
use crate::plonk_challenger::Challenger;
|
||||
use crate::plonk_common::reduce_with_powers;
|
||||
use crate::polynomial::old_polynomial::Polynomial;
|
||||
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
|
||||
use crate::util::transpose;
|
||||
use crate::proof::{FriProof, Hash};
|
||||
use crate::util::{log2_strict, reverse_index_bits_in_place, transpose};
|
||||
use anyhow::Result;
|
||||
|
||||
struct ListPolynomialCommitment<F: Field> {
|
||||
pub polynomials: Vec<PolynomialCoeffs<F>>,
|
||||
@ -40,7 +43,10 @@ impl<F: Field> ListPolynomialCommitment<F> {
|
||||
}))
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let merkle_tree = MerkleTree::new(transpose(&lde_values), false);
|
||||
let mut leaves = transpose(&lde_values);
|
||||
reverse_index_bits_in_place(&mut leaves);
|
||||
// let merkle_tree = MerkleTree::new(transpose(&lde_values), false);
|
||||
let merkle_tree = MerkleTree::new(leaves, false);
|
||||
|
||||
Self {
|
||||
polynomials,
|
||||
@ -73,14 +79,21 @@ impl<F: Field> ListPolynomialCommitment<F> {
|
||||
challenger.observe_elements(evals);
|
||||
}
|
||||
|
||||
challenger.observe_hash(&self.merkle_tree.root);
|
||||
let alpha = challenger.get_challenge();
|
||||
|
||||
dbg!(self
|
||||
.polynomials
|
||||
.iter()
|
||||
.map(|p| p.eval(F::MULTIPLICATIVE_GROUP_GENERATOR))
|
||||
.collect::<Vec<_>>());
|
||||
let scaled_poly = self
|
||||
.polynomials
|
||||
.iter()
|
||||
.rev()
|
||||
.map(|p| p.clone().into())
|
||||
.fold(Polynomial::empty(), |acc, p| acc.scalar_mul(alpha).add(&p));
|
||||
dbg!(scaled_poly.eval(F::MULTIPLICATIVE_GROUP_GENERATOR));
|
||||
let scaled_evals = evaluations
|
||||
.iter()
|
||||
.map(|e| reduce_with_powers(e, alpha))
|
||||
@ -93,25 +106,128 @@ impl<F: Field> ListPolynomialCommitment<F> {
|
||||
.collect::<Vec<_>>();
|
||||
debug_assert!(pairs.iter().all(|&(x, e)| scaled_poly.eval(x) == e));
|
||||
|
||||
dbg!(&pairs);
|
||||
let interpolant: Polynomial<F> = interpolant(&pairs).into();
|
||||
let denominator = points.iter().fold(Polynomial::empty(), |acc, &x| {
|
||||
acc.mul(&vec![-x, F::ONE].into())
|
||||
});
|
||||
let denominator = points
|
||||
.iter()
|
||||
.fold(Polynomial::from(vec![F::ONE]), |acc, &x| {
|
||||
acc.mul(&vec![-x, F::ONE].into())
|
||||
});
|
||||
dbg!(&denominator);
|
||||
let numerator = scaled_poly.add(&interpolant.neg());
|
||||
let (mut quotient, rem) = numerator.polynomial_division(&denominator);
|
||||
for x in points {
|
||||
dbg!(numerator.eval(*x));
|
||||
}
|
||||
dbg!(numerator.eval(F::MULTIPLICATIVE_GROUP_GENERATOR));
|
||||
dbg!(denominator.eval(F::MULTIPLICATIVE_GROUP_GENERATOR));
|
||||
let (mut quotient, rem) = numerator.polynomial_long_division(&denominator);
|
||||
dbg!(&numerator);
|
||||
dbg!(quotient.mul(&denominator).add(&rem));
|
||||
dbg!("ient);
|
||||
dbg!(&rem);
|
||||
debug_assert!(rem.is_zero());
|
||||
|
||||
quotient.pad(quotient.degree().next_power_of_two());
|
||||
let quotient_values = fft(quotient.clone().into());
|
||||
let lde_quotient = PolynomialCoeffs::from(quotient.clone()).lde(self.fri_config.rate_bits);
|
||||
let lde_quotient_values = fft(lde_quotient.clone());
|
||||
|
||||
let fri_proof = fri_proof(
|
||||
"ient.into(),
|
||||
"ient_values,
|
||||
&[self.merkle_tree.clone()],
|
||||
&lde_quotient,
|
||||
&lde_quotient_values,
|
||||
challenger,
|
||||
&self.fri_config,
|
||||
);
|
||||
todo!()
|
||||
|
||||
OpeningProof {
|
||||
evaluations,
|
||||
merkle_root: self.merkle_tree.root,
|
||||
fri_proof,
|
||||
quotient_degree: quotient.len(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct OpeningProof<F: Field> {
|
||||
evaluations: Vec<Vec<F>>,
|
||||
merkle_root: Hash<F>,
|
||||
fri_proof: FriProof<F>,
|
||||
quotient_degree: usize,
|
||||
}
|
||||
|
||||
impl<F: Field> OpeningProof<F> {
|
||||
pub fn verify(
|
||||
&self,
|
||||
points: &[F],
|
||||
challenger: &mut Challenger<F>,
|
||||
fri_config: &FriConfig,
|
||||
) -> Result<()> {
|
||||
for evals in &self.evaluations {
|
||||
challenger.observe_elements(evals);
|
||||
}
|
||||
|
||||
challenger.observe_hash(&self.merkle_root);
|
||||
let alpha = challenger.get_challenge();
|
||||
|
||||
let scaled_evals = self
|
||||
.evaluations
|
||||
.iter()
|
||||
.map(|e| reduce_with_powers(e, alpha))
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let pairs = points
|
||||
.iter()
|
||||
.zip(&scaled_evals)
|
||||
.map(|(&x, &e)| (x, e))
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
dbg!(self.quotient_degree);
|
||||
verify_fri_proof(
|
||||
log2_strict(self.quotient_degree),
|
||||
&pairs,
|
||||
alpha,
|
||||
&[self.merkle_root],
|
||||
&self.fri_proof,
|
||||
challenger,
|
||||
fri_config,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::field::crandall_field::CrandallField;
|
||||
use anyhow::Result;
|
||||
|
||||
#[test]
|
||||
fn test_polynomial_commitment() -> Result<()> {
|
||||
type F = CrandallField;
|
||||
|
||||
let k = 1;
|
||||
let degree_log = 3;
|
||||
let degree = 1 << degree_log;
|
||||
|
||||
let fri_config = FriConfig {
|
||||
proof_of_work_bits: 2,
|
||||
rate_bits: 2,
|
||||
reduction_arity_bits: vec![3, 2, 1],
|
||||
num_query_rounds: 1,
|
||||
};
|
||||
|
||||
let polys = (0..k)
|
||||
// .map(|_| PolynomialCoeffs::new((0..degree).map(|_| F::rand()).collect()))
|
||||
.map(|_| PolynomialCoeffs::new((0..degree).map(|i| F::from_canonical_u64(i)).collect()))
|
||||
.collect();
|
||||
|
||||
let lpc = ListPolynomialCommitment::new(polys, &fri_config, false);
|
||||
|
||||
let num_points = 3;
|
||||
let points = (0..num_points).map(|_| F::rand()).collect::<Vec<_>>();
|
||||
let points = vec![-F::TWO, -F::ONE - F::TWO, -F::TWO - F::TWO];
|
||||
|
||||
let proof = lpc.open(&points, &mut Challenger::new());
|
||||
|
||||
proof.verify(&points, &mut Challenger::new(), &fri_config)
|
||||
}
|
||||
}
|
||||
|
||||
@ -235,10 +235,11 @@ impl<F: Field> Polynomial<F> {
|
||||
}
|
||||
let a_deg = self.degree();
|
||||
let b_deg = b.degree();
|
||||
let a_pad = self.padded(a_deg + b_deg + 1);
|
||||
let b_pad = b.padded(a_deg + b_deg + 1);
|
||||
let new_deg = (a_deg + b_deg + 1).next_power_of_two();
|
||||
let a_pad = self.padded(new_deg);
|
||||
let b_pad = b.padded(new_deg);
|
||||
|
||||
let precomputation = fft_precompute(a_deg + b_deg + 1);
|
||||
let precomputation = fft_precompute(new_deg);
|
||||
let a_evals = fft_with_precomputation_power_of_2(a_pad.0.to_vec().into(), &precomputation);
|
||||
let b_evals = fft_with_precomputation_power_of_2(b_pad.0.to_vec().into(), &precomputation);
|
||||
|
||||
@ -275,11 +276,16 @@ impl<F: Field> Polynomial<F> {
|
||||
let cur_q_degree = remainder.degree() - b_degree;
|
||||
quotient[cur_q_degree] = cur_q_coeff;
|
||||
|
||||
dbg!(cur_q_coeff, cur_q_degree);
|
||||
dbg!(&b);
|
||||
for (i, &div_coeff) in b.iter().enumerate() {
|
||||
dbg!(i, div_coeff, remainder[cur_q_degree + i]);
|
||||
remainder[cur_q_degree + i] =
|
||||
remainder[cur_q_degree + i] - (cur_q_coeff * div_coeff);
|
||||
dbg!(remainder[cur_q_degree + i]);
|
||||
}
|
||||
remainder.trim();
|
||||
dbg!(&remainder);
|
||||
}
|
||||
(quotient, remainder)
|
||||
}
|
||||
|
||||
@ -90,17 +90,22 @@ pub struct FriQueryStep<F: Field> {
|
||||
pub merkle_proof: MerkleProof<F>,
|
||||
}
|
||||
|
||||
/// Evaluations and Merkle proof produced by the prover in a FRI query step.
|
||||
// TODO: Implement FriInitialTreeProofTarget
|
||||
pub struct FriInitialTreeProof<F: Field> {
|
||||
pub evals_proofs: Vec<(Vec<F>, MerkleProof<F>)>,
|
||||
}
|
||||
|
||||
/// Proof for a FRI query round.
|
||||
// TODO: Implement FriQueryRoundTarget
|
||||
pub struct FriQueryRound<F: Field> {
|
||||
pub initial_trees_proof: FriInitialTreeProof<F>,
|
||||
pub steps: Vec<FriQueryStep<F>>,
|
||||
}
|
||||
|
||||
pub struct FriProof<F: Field> {
|
||||
/// A Merkle root for each reduced polynomial in the commit phase.
|
||||
pub commit_phase_merkle_roots: Vec<Hash<F>>,
|
||||
/// Merkle proofs for the original purported codewords, i.e. the subject of the LDT.
|
||||
pub initial_merkle_proofs: Vec<MerkleProof<F>>,
|
||||
/// Query rounds proofs
|
||||
pub query_round_proofs: Vec<FriQueryRound<F>>,
|
||||
/// The final polynomial in coefficient form.
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user