More work on polynomial commitments

This commit is contained in:
wborgeaud 2021-05-04 17:48:26 +02:00
parent bb8a68e198
commit eb3011b02a
4 changed files with 290 additions and 57 deletions

View File

@ -1,13 +1,13 @@
use crate::field::fft::fft;
use crate::field::field::Field;
use crate::field::lagrange::{barycentric_weights, interpolate};
use crate::field::lagrange::{barycentric_weights, interpolant, interpolate};
use crate::hash::hash_n_to_1;
use crate::merkle_proofs::verify_merkle_proof;
use crate::merkle_tree::MerkleTree;
use crate::plonk_challenger::Challenger;
use crate::plonk_common::reduce_with_powers;
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
use crate::proof::{FriProof, FriQueryRound, FriQueryStep, Hash};
use crate::proof::{FriInitialTreeProof, FriProof, FriQueryRound, FriQueryStep, Hash};
use crate::util::{log2_strict, reverse_bits, reverse_index_bits_in_place};
use anyhow::{ensure, Result};
@ -56,32 +56,35 @@ fn fri_l(codeword_len: usize, rate_log: usize, conjecture: bool) -> f64 {
/// Builds a FRI proof.
pub fn fri_proof<F: Field>(
// Coefficients of the polynomial on which the LDT is performed.
// Only the first `1/rate` coefficients are non-zero.
polynomial_coeffs: &PolynomialCoeffs<F>,
initial_merkle_trees: &[MerkleTree<F>],
// Coefficients of the polynomial on which the LDT is performed. Only the first `1/rate` coefficients are non-zero.
lde_polynomial_coeffs: &PolynomialCoeffs<F>,
// Evaluation of the polynomial on the large domain.
polynomial_values: &PolynomialValues<F>,
lde_polynomial_values: &PolynomialValues<F>,
challenger: &mut Challenger<F>,
config: &FriConfig,
) -> FriProof<F> {
let n = polynomial_values.values.len();
assert_eq!(polynomial_coeffs.coeffs.len(), n);
let n = lde_polynomial_values.values.len();
assert_eq!(lde_polynomial_coeffs.coeffs.len(), n);
// Commit phase
let (trees, final_coeffs) =
fri_committed_trees(polynomial_coeffs, polynomial_values, challenger, config);
let (trees, final_coeffs) = fri_committed_trees(
lde_polynomial_coeffs,
lde_polynomial_values,
challenger,
config,
);
// PoW phase
let current_hash = challenger.get_hash();
let pow_witness = fri_proof_of_work(current_hash, config);
// Query phase
let query_round_proofs = fri_prover_query_rounds(&trees, challenger, n, config);
let query_round_proofs =
fri_prover_query_rounds(initial_merkle_trees, &trees, challenger, n, config);
FriProof {
commit_phase_merkle_roots: trees.iter().map(|t| t.root).collect(),
// TODO: Fix this
initial_merkle_proofs: vec![],
query_round_proofs,
final_poly: final_coeffs,
pow_witness,
@ -180,17 +183,19 @@ fn fri_verify_proof_of_work<F: Field>(
}
fn fri_prover_query_rounds<F: Field>(
initial_merkle_trees: &[MerkleTree<F>],
trees: &[MerkleTree<F>],
challenger: &mut Challenger<F>,
n: usize,
config: &FriConfig,
) -> Vec<FriQueryRound<F>> {
(0..config.num_query_rounds)
.map(|_| fri_prover_query_round(trees, challenger, n, config))
.map(|_| fri_prover_query_round(initial_merkle_trees, trees, challenger, n, config))
.collect()
}
fn fri_prover_query_round<F: Field>(
initial_merkle_trees: &[MerkleTree<F>],
trees: &[MerkleTree<F>],
challenger: &mut Challenger<F>,
n: usize,
@ -201,20 +206,17 @@ fn fri_prover_query_round<F: Field>(
let x = challenger.get_challenge();
let mut domain_size = n;
let mut x_index = x.to_canonical_u64() as usize % n;
let mut x_index = 0;
let initial_proof = initial_merkle_trees
.iter()
.map(|t| (t.get(x_index).to_vec(), t.prove(x_index)))
.collect::<Vec<_>>();
for (i, tree) in trees.iter().enumerate() {
let arity_bits = config.reduction_arity_bits[i];
let arity = 1 << arity_bits;
let next_domain_size = domain_size >> arity_bits;
let evals = if i == 0 {
// For the first layer, we need to send the evaluation at `x` too.
tree.get(x_index >> arity_bits).to_vec()
} else {
// For the other layers, we don't need to send the evaluation at `x`, since it can
// be inferred by the verifier. See the `compute_evaluation` function.
let mut evals = tree.get(x_index >> arity_bits).to_vec();
evals.remove(x_index & (arity - 1));
evals
};
let mut evals = tree.get(x_index >> arity_bits).to_vec();
dbg!(i, x_index, x_index & (arity - 1), &evals);
evals.remove(x_index & (arity - 1));
let merkle_proof = tree.prove(x_index >> arity_bits);
query_steps.push(FriQueryStep {
@ -222,10 +224,15 @@ fn fri_prover_query_round<F: Field>(
merkle_proof,
});
domain_size = next_domain_size;
domain_size >>= arity_bits;
x_index >>= arity_bits;
}
FriQueryRound { steps: query_steps }
FriQueryRound {
initial_trees_proof: FriInitialTreeProof {
evals_proofs: initial_proof,
},
steps: query_steps,
}
}
/// Computes P'(x^arity) from {P(x*g^i)}_(i=0..arity), where g is a `arity`-th root of unity
@ -256,13 +263,25 @@ fn compute_evaluation<F: Field>(
interpolate(&points, beta, &barycentric_weights)
}
fn verify_fri_proof<F: Field>(
pub fn verify_fri_proof<F: Field>(
purported_degree_log: usize,
// Point-evaluation pairs for polynomial commitments.
points: &[(F, F)],
// Scaling factor to combine polynomials.
alpha: F,
initial_merkle_roots: &[Hash<F>],
proof: &FriProof<F>,
challenger: &mut Challenger<F>,
config: &FriConfig,
) -> Result<()> {
let total_arities = config.reduction_arity_bits.iter().sum::<usize>();
dbg!(
purported_degree_log,
log2_strict(proof.final_poly.len()) + total_arities - config.rate_bits,
log2_strict(proof.final_poly.len()),
total_arities,
config.rate_bits,
);
ensure!(
purported_degree_log
== log2_strict(proof.final_poly.len()) + total_arities - config.rate_bits,
@ -296,14 +315,71 @@ fn verify_fri_proof<F: Field>(
"Number of reductions should be non-zero."
);
dbg!(&points);
let interpolant = interpolant(points);
for round_proof in &proof.query_round_proofs {
fri_verifier_query_round(&proof, challenger, n, &betas, round_proof, config)?;
fri_verifier_query_round(
&interpolant,
points,
alpha,
initial_merkle_roots,
&proof,
challenger,
n,
&betas,
round_proof,
config,
)?;
}
Ok(())
}
fn fri_verify_initial_proof<F: Field>(
x_index: usize,
proof: &FriInitialTreeProof<F>,
initial_merkle_roots: &[Hash<F>],
) -> Result<()> {
for ((evals, merkle_proof), &root) in proof.evals_proofs.iter().zip(initial_merkle_roots) {
verify_merkle_proof(evals.clone(), x_index, root, merkle_proof, false)?;
}
Ok(())
}
fn fri_combine_initial<F: Field>(
proof: &FriInitialTreeProof<F>,
alpha: F,
interpolant: &PolynomialCoeffs<F>,
points: &[(F, F)],
subgroup_x: F,
) -> F {
dbg!(proof
.evals_proofs
.iter()
.map(|(v, _)| v)
.collect::<Vec<_>>());
let e = proof
.evals_proofs
.iter()
.map(|(v, _)| v)
.flatten()
.rev()
.fold(F::ZERO, |acc, &e| alpha * acc + e);
dbg!(e);
let numerator = e - interpolant.eval(subgroup_x);
dbg!(numerator);
dbg!(&points);
let denominator = points.iter().fold(F::ONE, |acc, &(x, _)| subgroup_x - x);
dbg!(denominator);
numerator / denominator
}
fn fri_verifier_query_round<F: Field>(
interpolant: &PolynomialCoeffs<F>,
points: &[(F, F)],
alpha: F,
initial_merkle_roots: &[Hash<F>],
proof: &FriProof<F>,
challenger: &mut Challenger<F>,
n: usize,
@ -311,10 +387,16 @@ fn fri_verifier_query_round<F: Field>(
round_proof: &FriQueryRound<F>,
config: &FriConfig,
) -> Result<()> {
let mut evaluations = Vec::new();
let mut evaluations: Vec<Vec<F>> = Vec::new();
let x = challenger.get_challenge();
let mut domain_size = n;
let mut x_index = x.to_canonical_u64() as usize % n;
let mut x_index = 0;
fri_verify_initial_proof(
x_index,
&round_proof.initial_trees_proof,
initial_merkle_roots,
)?;
let mut old_x_index = 0;
// `subgroup_x` is `subgroup[x_index]`, i.e., the actual field element in the domain.
let log_n = log2_strict(n);
@ -323,24 +405,30 @@ fn fri_verifier_query_round<F: Field>(
for (i, &arity_bits) in config.reduction_arity_bits.iter().enumerate() {
let arity = 1 << arity_bits;
let next_domain_size = domain_size >> arity_bits;
if i == 0 {
let evals = round_proof.steps[0].evals.clone();
evaluations.push(evals);
let e_x = if i == 0 {
fri_combine_initial(
&round_proof.initial_trees_proof,
alpha,
interpolant,
points,
subgroup_x,
)
} else {
let last_evals = &evaluations[i - 1];
// Infer P(y) from {P(x)}_{x^arity=y}.
let e_x = compute_evaluation(
compute_evaluation(
subgroup_x,
old_x_index,
config.reduction_arity_bits[i - 1],
last_evals,
betas[i - 1],
);
let mut evals = round_proof.steps[i].evals.clone();
// Insert P(y) into the evaluation vector, since it wasn't included by the prover.
evals.insert(x_index & (arity - 1), e_x);
evaluations.push(evals);
)
};
let mut evals = round_proof.steps[i].evals.clone();
// Insert P(y) into the evaluation vector, since it wasn't included by the prover.
evals.insert(x_index & (arity - 1), e_x);
evaluations.push(evals);
dbg!(i, &evaluations[i]);
verify_merkle_proof(
evaluations[i].clone(),
x_index >> arity_bits,
@ -409,11 +497,29 @@ mod tests {
proof_of_work_bits: 2,
reduction_arity_bits,
};
let tree = {
let mut leaves = coset_lde
.values
.iter()
.map(|&x| vec![x])
.collect::<Vec<_>>();
reverse_index_bits_in_place(&mut leaves);
MerkleTree::new(leaves, false)
};
let root = tree.root;
let mut challenger = Challenger::new();
let proof = fri_proof(&coeffs, &coset_lde, &mut challenger, &config);
let proof = fri_proof(&[tree], &coeffs, &coset_lde, &mut challenger, &config);
let mut challenger = Challenger::new();
verify_fri_proof(degree_log, &proof, &mut challenger, &config)?;
verify_fri_proof(
degree_log,
&[],
F::ONE,
&[root],
&proof,
&mut challenger,
&config,
)?;
Ok(())
}

View File

@ -1,13 +1,16 @@
use crate::field::fft::fft;
use crate::field::field::Field;
use crate::field::lagrange::{interpolant, interpolate};
use crate::fri::{fri_proof, FriConfig};
use crate::fri::{fri_proof, verify_fri_proof, FriConfig};
use crate::merkle_proofs::verify_merkle_proof;
use crate::merkle_tree::MerkleTree;
use crate::plonk_challenger::Challenger;
use crate::plonk_common::reduce_with_powers;
use crate::polynomial::old_polynomial::Polynomial;
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
use crate::util::transpose;
use crate::proof::{FriProof, Hash};
use crate::util::{log2_strict, reverse_index_bits_in_place, transpose};
use anyhow::Result;
struct ListPolynomialCommitment<F: Field> {
pub polynomials: Vec<PolynomialCoeffs<F>>,
@ -40,7 +43,10 @@ impl<F: Field> ListPolynomialCommitment<F> {
}))
.collect::<Vec<_>>();
let merkle_tree = MerkleTree::new(transpose(&lde_values), false);
let mut leaves = transpose(&lde_values);
reverse_index_bits_in_place(&mut leaves);
// let merkle_tree = MerkleTree::new(transpose(&lde_values), false);
let merkle_tree = MerkleTree::new(leaves, false);
Self {
polynomials,
@ -73,14 +79,21 @@ impl<F: Field> ListPolynomialCommitment<F> {
challenger.observe_elements(evals);
}
challenger.observe_hash(&self.merkle_tree.root);
let alpha = challenger.get_challenge();
dbg!(self
.polynomials
.iter()
.map(|p| p.eval(F::MULTIPLICATIVE_GROUP_GENERATOR))
.collect::<Vec<_>>());
let scaled_poly = self
.polynomials
.iter()
.rev()
.map(|p| p.clone().into())
.fold(Polynomial::empty(), |acc, p| acc.scalar_mul(alpha).add(&p));
dbg!(scaled_poly.eval(F::MULTIPLICATIVE_GROUP_GENERATOR));
let scaled_evals = evaluations
.iter()
.map(|e| reduce_with_powers(e, alpha))
@ -93,25 +106,128 @@ impl<F: Field> ListPolynomialCommitment<F> {
.collect::<Vec<_>>();
debug_assert!(pairs.iter().all(|&(x, e)| scaled_poly.eval(x) == e));
dbg!(&pairs);
let interpolant: Polynomial<F> = interpolant(&pairs).into();
let denominator = points.iter().fold(Polynomial::empty(), |acc, &x| {
acc.mul(&vec![-x, F::ONE].into())
});
let denominator = points
.iter()
.fold(Polynomial::from(vec![F::ONE]), |acc, &x| {
acc.mul(&vec![-x, F::ONE].into())
});
dbg!(&denominator);
let numerator = scaled_poly.add(&interpolant.neg());
let (mut quotient, rem) = numerator.polynomial_division(&denominator);
for x in points {
dbg!(numerator.eval(*x));
}
dbg!(numerator.eval(F::MULTIPLICATIVE_GROUP_GENERATOR));
dbg!(denominator.eval(F::MULTIPLICATIVE_GROUP_GENERATOR));
let (mut quotient, rem) = numerator.polynomial_long_division(&denominator);
dbg!(&numerator);
dbg!(quotient.mul(&denominator).add(&rem));
dbg!(&quotient);
dbg!(&rem);
debug_assert!(rem.is_zero());
quotient.pad(quotient.degree().next_power_of_two());
let quotient_values = fft(quotient.clone().into());
let lde_quotient = PolynomialCoeffs::from(quotient.clone()).lde(self.fri_config.rate_bits);
let lde_quotient_values = fft(lde_quotient.clone());
let fri_proof = fri_proof(
&quotient.into(),
&quotient_values,
&[self.merkle_tree.clone()],
&lde_quotient,
&lde_quotient_values,
challenger,
&self.fri_config,
);
todo!()
OpeningProof {
evaluations,
merkle_root: self.merkle_tree.root,
fri_proof,
quotient_degree: quotient.len(),
}
}
}
pub struct OpeningProof<F: Field> {
evaluations: Vec<Vec<F>>,
merkle_root: Hash<F>,
fri_proof: FriProof<F>,
quotient_degree: usize,
}
impl<F: Field> OpeningProof<F> {
pub fn verify(
&self,
points: &[F],
challenger: &mut Challenger<F>,
fri_config: &FriConfig,
) -> Result<()> {
for evals in &self.evaluations {
challenger.observe_elements(evals);
}
challenger.observe_hash(&self.merkle_root);
let alpha = challenger.get_challenge();
let scaled_evals = self
.evaluations
.iter()
.map(|e| reduce_with_powers(e, alpha))
.collect::<Vec<_>>();
let pairs = points
.iter()
.zip(&scaled_evals)
.map(|(&x, &e)| (x, e))
.collect::<Vec<_>>();
dbg!(self.quotient_degree);
verify_fri_proof(
log2_strict(self.quotient_degree),
&pairs,
alpha,
&[self.merkle_root],
&self.fri_proof,
challenger,
fri_config,
)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::field::crandall_field::CrandallField;
use anyhow::Result;
#[test]
fn test_polynomial_commitment() -> Result<()> {
type F = CrandallField;
let k = 1;
let degree_log = 3;
let degree = 1 << degree_log;
let fri_config = FriConfig {
proof_of_work_bits: 2,
rate_bits: 2,
reduction_arity_bits: vec![3, 2, 1],
num_query_rounds: 1,
};
let polys = (0..k)
// .map(|_| PolynomialCoeffs::new((0..degree).map(|_| F::rand()).collect()))
.map(|_| PolynomialCoeffs::new((0..degree).map(|i| F::from_canonical_u64(i)).collect()))
.collect();
let lpc = ListPolynomialCommitment::new(polys, &fri_config, false);
let num_points = 3;
let points = (0..num_points).map(|_| F::rand()).collect::<Vec<_>>();
let points = vec![-F::TWO, -F::ONE - F::TWO, -F::TWO - F::TWO];
let proof = lpc.open(&points, &mut Challenger::new());
proof.verify(&points, &mut Challenger::new(), &fri_config)
}
}

View File

@ -235,10 +235,11 @@ impl<F: Field> Polynomial<F> {
}
let a_deg = self.degree();
let b_deg = b.degree();
let a_pad = self.padded(a_deg + b_deg + 1);
let b_pad = b.padded(a_deg + b_deg + 1);
let new_deg = (a_deg + b_deg + 1).next_power_of_two();
let a_pad = self.padded(new_deg);
let b_pad = b.padded(new_deg);
let precomputation = fft_precompute(a_deg + b_deg + 1);
let precomputation = fft_precompute(new_deg);
let a_evals = fft_with_precomputation_power_of_2(a_pad.0.to_vec().into(), &precomputation);
let b_evals = fft_with_precomputation_power_of_2(b_pad.0.to_vec().into(), &precomputation);
@ -275,11 +276,16 @@ impl<F: Field> Polynomial<F> {
let cur_q_degree = remainder.degree() - b_degree;
quotient[cur_q_degree] = cur_q_coeff;
dbg!(cur_q_coeff, cur_q_degree);
dbg!(&b);
for (i, &div_coeff) in b.iter().enumerate() {
dbg!(i, div_coeff, remainder[cur_q_degree + i]);
remainder[cur_q_degree + i] =
remainder[cur_q_degree + i] - (cur_q_coeff * div_coeff);
dbg!(remainder[cur_q_degree + i]);
}
remainder.trim();
dbg!(&remainder);
}
(quotient, remainder)
}

View File

@ -90,17 +90,22 @@ pub struct FriQueryStep<F: Field> {
pub merkle_proof: MerkleProof<F>,
}
/// Evaluations and Merkle proof produced by the prover in a FRI query step.
// TODO: Implement FriInitialTreeProofTarget
pub struct FriInitialTreeProof<F: Field> {
pub evals_proofs: Vec<(Vec<F>, MerkleProof<F>)>,
}
/// Proof for a FRI query round.
// TODO: Implement FriQueryRoundTarget
pub struct FriQueryRound<F: Field> {
pub initial_trees_proof: FriInitialTreeProof<F>,
pub steps: Vec<FriQueryStep<F>>,
}
pub struct FriProof<F: Field> {
/// A Merkle root for each reduced polynomial in the commit phase.
pub commit_phase_merkle_roots: Vec<Hash<F>>,
/// Merkle proofs for the original purported codewords, i.e. the subject of the LDT.
pub initial_merkle_proofs: Vec<MerkleProof<F>>,
/// Query rounds proofs
pub query_round_proofs: Vec<FriQueryRound<F>>,
/// The final polynomial in coefficient form.